{
"cells": [
{
"attachments": {},
"cell_type": "markdown",
"id": "8f5d9cac",
"metadata": {
"slideshow": {
"slide_type": "slide"
},
"tags": []
},
"source": [
"# Lab: Topic Coherence\n",
"\n",
"In this section, we will evaluate some topics using the `20newsgroups` dataset as a reference corpus to illustrate topic coherence in practice. We will first preprocess the data and then create some random topics. Finally, we will compute the coherence scores for these topics using Gensim's CoherenceModel.\n"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "99b2a449",
"metadata": {},
"outputs": [],
"source": [
"%config InlineBackend.figure_format='retina'\n",
"\n",
"import re\n",
"import pandas as pd\n",
"import seaborn as sns\n",
"import matplotlib.pyplot as plt\n",
"from sklearn.datasets import fetch_20newsgroups\n",
"from nltk.corpus import stopwords\n",
"from nltk.collocations import BigramCollocationFinder, BigramAssocMeasures\n",
"from gensim.models.coherencemodel import CoherenceModel\n",
"from gensim.corpora.dictionary import Dictionary"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "80df897d",
"metadata": {},
"source": [
"## Loading the Data\n",
"\n",
"We first load and preprocess the `20newsgroups` dataset by removing headers, footers, and quotes, tokenizing the texts, and removing stopwords.\n"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "8f866d41",
"metadata": {
"slideshow": {
"slide_type": "slide"
},
"tags": []
},
"outputs": [],
"source": [
"# Load the 20newsgroups dataset and preprocess the texts\n",
"texts, _ = fetch_20newsgroups(\n",
" subset=\"all\", remove=(\"headers\", \"footers\", \"quotes\"), return_X_y=True\n",
")\n",
"tokenizer = lambda s: re.findall(\"\\w+\", s.lower())\n",
"texts = [tokenizer(t) for t in texts]\n",
"stopwords = set(stopwords.words(\"english\"))\n",
"texts = [[w for w in t if w not in stopwords and len(w) > 1] for t in texts]"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "df13391d",
"metadata": {},
"source": [
"Then, we find collocations in the texts and display the top 10 collocations.\n"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "1a596b97",
"metadata": {
"slideshow": {
"slide_type": "slide"
},
"tags": []
},
"outputs": [],
"source": [
"# Find collocations in the texts\n",
"finder = BigramCollocationFinder.from_words(sum(texts[:100], []))\n",
"bgm = BigramAssocMeasures()\n",
"score = bgm.mi_like\n",
"collocations = {\"_\".join(bigram): pmi for bigram, pmi in finder.score_ngrams(score)}"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "ecd44755",
"metadata": {
"slideshow": {
"slide_type": "slide"
},
"tags": []
},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
bigram
\n",
"
score
\n",
"
\n",
" \n",
" \n",
"
\n",
"
0
\n",
"
united_states
\n",
"
7.111111
\n",
"
\n",
"
\n",
"
1
\n",
"
et_al
\n",
"
5.142857
\n",
"
\n",
"
\n",
"
2
\n",
"
greatly_appreciated
\n",
"
3.000000
\n",
"
\n",
"
\n",
"
3
\n",
"
hymenaeus_beta
\n",
"
3.000000
\n",
"
\n",
"
\n",
"
4
\n",
"
proving_existence
\n",
"
3.000000
\n",
"
\n",
"
\n",
"
5
\n",
"
3d_studio
\n",
"
2.666667
\n",
"
\n",
"
\n",
"
6
\n",
"
mozumder_proving
\n",
"
2.250000
\n",
"
\n",
"
\n",
"
7
\n",
"
_equinox_iii
\n",
"
2.000000
\n",
"
\n",
"
\n",
"
8
\n",
"
alex_delvecchio
\n",
"
2.000000
\n",
"
\n",
"
\n",
"
9
\n",
"
annals_cirp
\n",
"
2.000000
\n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" bigram score\n",
"0 united_states 7.111111\n",
"1 et_al 5.142857\n",
"2 greatly_appreciated 3.000000\n",
"3 hymenaeus_beta 3.000000\n",
"4 proving_existence 3.000000\n",
"5 3d_studio 2.666667\n",
"6 mozumder_proving 2.250000\n",
"7 _equinox_iii 2.000000\n",
"8 alex_delvecchio 2.000000\n",
"9 annals_cirp 2.000000"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Top 10 collocations\n",
"collocations = pd.DataFrame(\n",
" sorted(collocations.items(), key=lambda x: x[1], reverse=True),\n",
" columns=[\"bigram\", \"score\"],\n",
")\n",
"collocations.head(10)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "1eeb6d38",
"metadata": {},
"source": [
"## Computing Coherence Scores\n",
"\n",
"Next, we create some random topics and a dictionary with the vocabulary of the texts. We instantiate the CoherenceModel with the topics, texts, and dictionary, specifying the coherence measures. We compute the coherence scores for each topic and prepare the data for visualization.\n"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "0f30ef52",
"metadata": {
"slideshow": {
"slide_type": "slide"
},
"tags": []
},
"outputs": [],
"source": [
"# Create some random topics\n",
"topics = [\n",
" [\"car\", \"engine\", \"tire\", \"gasoline\", \"speed\"],\n",
" [\"dog\", \"cat\", \"animal\", \"pet\", \"veterinarian\"],\n",
" [\"movie\", \"director\", \"actor\", \"scene\", \"cinema\"],\n",
" [\"music\", \"song\", \"artist\", \"instrument\", \"concert\"],\n",
"]\n",
"\n",
"# Create a dictionary with the vocabulary\n",
"word2id = Dictionary(texts)\n",
"\n",
"# Instantiate the CoherenceModel\n",
"cm = CoherenceModel(topics=topics, texts=texts, coherence=\"c_v\", dictionary=word2id)\n",
"\n",
"# Compute coherence scores per topic\n",
"coherence_per_topic = cm.get_coherence_per_topic()\n",
"\n",
"# Instantiate the CoherenceModel with c_uci coherence measure\n",
"cm_uci = CoherenceModel(\n",
" topics=topics, texts=texts, coherence=\"c_uci\", dictionary=word2id\n",
")\n",
"\n",
"# Compute coherence scores per topic\n",
"coherence_per_topic_uci = cm_uci.get_coherence_per_topic()\n",
"\n",
"# Instantiate the CoherenceModel with u_mass coherence measure\n",
"cm_umass = CoherenceModel(\n",
" topics=topics, texts=texts, coherence=\"u_mass\", dictionary=word2id\n",
")\n",
"\n",
"# Compute coherence scores per topic\n",
"coherence_per_topic_umass = cm_umass.get_coherence_per_topic()\n"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "461635a1",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
Topic
\n",
"
Coherence
\n",
"
Measure
\n",
"
\n",
" \n",
" \n",
"
\n",
"
0
\n",
"
car, engine, tire, gasoline, speed
\n",
"
0.702137
\n",
"
c_v
\n",
"
\n",
"
\n",
"
1
\n",
"
dog, cat, animal, pet, veterinarian
\n",
"
0.326970
\n",
"
c_v
\n",
"
\n",
"
\n",
"
2
\n",
"
movie, director, actor, scene, cinema
\n",
"
0.238576
\n",
"
c_v
\n",
"
\n",
"
\n",
"
3
\n",
"
music, song, artist, instrument, concert
\n",
"
0.333913
\n",
"
c_v
\n",
"
\n",
"
\n",
"
4
\n",
"
car, engine, tire, gasoline, speed
\n",
"
-0.406149
\n",
"
c_uci
\n",
"
\n",
"
\n",
"
5
\n",
"
dog, cat, animal, pet, veterinarian
\n",
"
-3.889160
\n",
"
c_uci
\n",
"
\n",
"
\n",
"
6
\n",
"
movie, director, actor, scene, cinema
\n",
"
-7.223855
\n",
"
c_uci
\n",
"
\n",
"
\n",
"
7
\n",
"
music, song, artist, instrument, concert
\n",
"
-6.404229
\n",
"
c_uci
\n",
"
\n",
"
\n",
"
8
\n",
"
car, engine, tire, gasoline, speed
\n",
"
-2.893048
\n",
"
u_mass
\n",
"
\n",
"
\n",
"
9
\n",
"
dog, cat, animal, pet, veterinarian
\n",
"
-6.618890
\n",
"
u_mass
\n",
"
\n",
"
\n",
"
10
\n",
"
movie, director, actor, scene, cinema
\n",
"
-15.593594
\n",
"
u_mass
\n",
"
\n",
"
\n",
"
11
\n",
"
music, song, artist, instrument, concert
\n",
"
-9.202692
\n",
"
u_mass
\n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Topic Coherence Measure\n",
"0 car, engine, tire, gasoline, speed 0.702137 c_v\n",
"1 dog, cat, animal, pet, veterinarian 0.326970 c_v\n",
"2 movie, director, actor, scene, cinema 0.238576 c_v\n",
"3 music, song, artist, instrument, concert 0.333913 c_v\n",
"4 car, engine, tire, gasoline, speed -0.406149 c_uci\n",
"5 dog, cat, animal, pet, veterinarian -3.889160 c_uci\n",
"6 movie, director, actor, scene, cinema -7.223855 c_uci\n",
"7 music, song, artist, instrument, concert -6.404229 c_uci\n",
"8 car, engine, tire, gasoline, speed -2.893048 u_mass\n",
"9 dog, cat, animal, pet, veterinarian -6.618890 u_mass\n",
"10 movie, director, actor, scene, cinema -15.593594 u_mass\n",
"11 music, song, artist, instrument, concert -9.202692 u_mass"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import numpy as np\n",
"\n",
"# Combine all coherence scores into a single DataFrame\n",
"all_coherence_scores = pd.DataFrame(\n",
" {\n",
" \"Topic\": [\", \".join(t) for t in topics] * 3,\n",
" \"Coherence\": np.concatenate(\n",
" [coherence_per_topic, coherence_per_topic_uci, coherence_per_topic_umass]\n",
" ),\n",
" \"Measure\": [\"c_v\"] * len(topics)\n",
" + [\"c_uci\"] * len(topics)\n",
" + [\"u_mass\"] * len(topics),\n",
" }\n",
")\n",
"all_coherence_scores\n"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "27440b36",
"metadata": {},
"source": [
"Here, we have the coherence scores for four different topics using three coherence measures: $c_{v}$, $c_{uci}$, and $u_{mass}$. Let's interpret the results:\n",
"\n",
"1. Topic 1: \"car, engine, tire, gasoline, speed\"\n",
" - $c_{v}$ coherence score: 0.702137\n",
" - $c_{uci}$ coherence score: -0.406149\n",
" - $u_{mass}$ coherence score: -2.893048\n",
"\n",
"Topic 1 seems to be the most coherent topic according to the $c_{v}$ measure, while it has a relatively low negative score for the $c_{uci}$ and $u_{mass}$ measures. This suggests that this topic is quite coherent and has a strong relationship between the words, especially when considering the $c_{v}$ measure.\n",
"\n",
"2. Topic 2: \"dog, cat, animal, pet, veterinarian\"\n",
" - $c_{v}$ coherence score: 0.326970\n",
" - $c_{uci}$ coherence score: -3.889160\n",
" - $u_{mass}$ coherence score: -6.618890\n",
"\n",
"Topic 2 has a lower $c_{v}$ coherence score than Topic 1, but it's still positive, indicating a reasonable level of coherence. However, the $c_{uci}$ and $u_{mass}$ measures show relatively large negative scores, suggesting a weaker relationship between the words in this topic.\n",
"\n",
"3. Topic 3: \"movie, director, actor, scene, cinema\"\n",
" - $c_{v}$ coherence score: 0.238576\n",
" - $c_{uci}$ coherence score: -7.223855\n",
" - $u_{mass}$ coherence score: -15.593594\n",
"\n",
"Topic 3 has the lowest $c_{v}$ coherence score among the four topics, but it's still positive. However, it has the largest negative scores for both the $c_{uci}$ and $u_{mass}$ measures, which suggests that the relationship between the words in this topic is the weakest among the four topics.\n",
"\n",
"4. Topic 4: \"music, song, artist, instrument, concert\"\n",
" - $c_{v}$ coherence score: 0.333913\n",
" - $c_{uci}$ coherence score: -6.404229\n",
" - $u_{mass}$ coherence score: -9.202692\n",
"\n",
"Topic 4 has a similar $c_{v}$ coherence score as Topic 2, indicating a decent level of coherence. The $c_{uci}$ and $u_{mass}$ measures show large negative scores, but they are not as low as Topic 3's scores.\n",
"\n",
"In summary, according to the $c_{v}$ coherence measure, Topic 1 is the most coherent, followed by Topics 2, 4, and 3. However, the $c_{uci}$ and $u_{mass}$ measures give relatively large negative scores for all the topics, with Topic 3 consistently being the least coherent. It's important to note that the scale and interpretation of the coherence measures differ, so comparing the raw scores across measures can be misleading.\n"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "8b7518d4",
"metadata": {},
"source": [
"## Visualizing the Coherence Scores\n",
"\n",
"Finally, we visualize the coherence scores.\n"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "ebad1004",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAACagAAAXGCAYAAABvwNq8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdd3gU5drH8d+mhxICIZDQEnovItJECYoUBcUjBhQQ9GBBRVGxHhWwggU4BzSKHqQpiAULB9RDF6UjAgEEQocEQkIgIY1s5v2Dw7y7pOwm2c2S8P1cF5czu/c8c8/sM7s77p3nsRiGYQgAAAAAAAAAAAAAAAAAABfz8nQCAAAAAAAAAAAAAAAAAIDyiQI1AAAAAAAAAAAAAAAAAIBbUKAGAAAAAAAAAAAAAAAAAHALCtQAAAAAAAAAAAAAAAAAAG5BgRoAAAAAAAAAAAAAAAAAwC0oUAMAAAAAAAAAAAAAAAAAuAUFagAAAAAAAAAAAAAAAAAAt6BADQAAAAAAAAAAAAAAAADgFhSoAQAAAAAAAAAAAAAAAADcggI1AAAAAAAAAAAAAAAAAIBbUKAGAAAAAAAAAAAAAAAAAHALCtQAAAAAAAAAAAAAAAAAAG5BgRoAAAAAAAAAAAAAAAAAwC0oUAMAAAAAAAAAAAAAAAAAuAUFagAAAAAAAAAAAAAAAAAAt6BADQAAAAAAAAAAAAAAAADgFhSoAQAAAAAAAAAAAAAAAADcggI1AAAAAAAAAAAAAAAAAIBbUKAGAAAAAAAAAAAAAAAAAHALCtQAAAAAAOXOqlWrZLFYZLFYFBUV5el0AAAedujQIfNzITIy0tPplHt8DgMAAAAAAFsUqAEAAAAAiu3cuXP68ssvNXLkSLVr1061a9eWv7+/KleurHr16qlnz5568cUXtW7dOk+nCpTI6dOnNWXKFN1+++2KjIxU5cqV5ePjo6CgIDVq1Ei33HKLxo4dq6+++krJycmeThdwSmRkpFlE5Ip/FCLBXWbNmpWnv915551FaiM2NjZPGxQrAgAAAABQOnw8nQAAAAAAoOxJT0/X1KlT9d577+nMmTN5ns/OzlZaWpqOHj2q5cuXa+LEiWrSpInGjx+vwYMHy2KxeCBroOhyc3P17rvvavz48crMzMzzfGpqqlJTUxUXF6dly5ZJkry8vDR//nxFR0eXdroAcNVYsmSJkpKSFBIS4lT87Nmz3ZwRAAAAAAAoCAVqAAAAAIAiOXLkiPr376/t27fbPV6vXj21adNGoaGhslqtSkhI0J9//qmTJ09Kkvbu3at7771XR48e1XPPPeeJ1IEi+/vf/65Zs2aZ615eXmrfvr2aNGmiypUrKy0tTceOHdMff/yhc+fOSbpY1HZpGbiSDR8+XElJSQU+f/z4cX333Xfm+mOPPVZoe40bN3ZVaoBD2dnZWrBggcN+KV18X/78889LISsAAAAAAJAfCtQAAAAAAE47dOiQunTpooSEBEmSxWLRPffco5deekktW7bME28YhjZv3qxp06bp888/V25urtLT00s7baBY5syZY1ecdv/99+vNN99UeHh4ntjc3FytW7dOX3/9NaP0oMyYMGFCoc+vWrXKrkBt+vTpbs7IfSIjI2UYhqfTgAs0atRIhw8f1oULFzRnzhynCtSWLVumEydOSJJatGihXbt2uTtNAAAAAABgw8vTCQAAAAAAyobs7GzdfffdZnFaQECAvv32W33++ef5FqdJFwvYrrvuOs2ZM0d//vmnWrVqVZopAyUyadIkc/nvf/+7Zs6cmW9xmnRxZLXrr79eU6ZM0fHjx3XrrbeWVpoAcFUJCQkx32M3btyov/76y+E2toXD9913n9tyAwAAAAAA+aNADQAAAADglHfeeUebN28212fPnq0BAwY4vX2rVq20fv163XLLLW7IDnCt48eP242w8+yzzzq9bWBgoGrVquWOtAAAujg97SVz5swpNDY1NdUcCbBt27Zq27atO1MDAAAAAAD5oEANAAAAAOBQRkaG/vWvf5nrf/vb3xQdHV3kdipWrKjrr7++0JjDhw/r1VdfVefOnVWzZk35+fmpZs2a6ty5s8aNG6ejR48Web+XrFixQoMHD1aDBg0UEBCgkJAQ3XjjjZo+fbouXLhQpLaOHj2q119/XTfccINq1aolf39/VatWTddcc43Gjh2rvXv3OmxjxIgRslgsslgs5lSSKSkp+uc//6kbb7xRtWvXlo+PjywWi1JSUvJsbxiGFi1apOHDh6tJkyaqUqWKAgICVLduXQ0YMECzZ89WTk5OoTkcOnTIzCEyMtJ8fPPmzRo5cqSaNGmiChUqqGrVqurYsaPeeustnT9/viinSufOndO0adPUv39/RUZGqlKlSvL391etWrV08803a8KECYqNjXXYjiuO11nHjx+3W4+IiHBJu5c7cOCAxo8fb77eAQEBqlChgho0aKABAwZo2rRpOnXqlMN2YmNj9eyzz+qaa65R9erVzfMbFRWlSZMmKSkpyWEbs2bNMvvCiBEjJElWq1ULFizQHXfcoQYNGigwMFAWi8Vu2kdbmzZt0lNPPaV27dopNDRUfn5+CgsLU/fu3TVp0iSdOXPGqfNy+vRpvffee+rZs6dq1aqlgIAA+fr6Kjg4WC1bttTAgQM1efJkHTx40Kn2ChMZGWke96FDhyRJe/bs0ZgxY9SiRQsFBQUpKChIbdq00csvv2yOIuksd16na9eu1ciRI9WsWTNVqVJFFotFY8aMKeIZcK3169fr8ccfV8uWLVW1alUFBASoTp066tOnj6ZPn+7U+8f48ePN4x0/frwk6fz58/rggw90ww03KCwsTAEBAYqIiNCQIUO0evVqh20WdA4L46r3LmccPnxYMTExuueee9SqVStVqVJFvr6+CgkJUevWrTVq1CitX7/eqbby+2xJT0/Xhx9+qG7duqlmzZry9/dX3bp1dc899+i3334rUq779u3TmDFj1KxZM1WsWFHVqlVTu3bt9Oqrr+rYsWNFPfRiue222xQSEiJJmjdvXqHTt3799dfm9OLFHT3t/PnziomJUf/+/RUREaEKFSqocuXKaty4sR544AGtWLHCqXZyc3P166+/6tVXX1WvXr1Ur149VahQQf7+/goPD9dNN92kN998U6dPn3Y6t6NHj2rChAm68cYbzdfWz89PISEhatu2re69917FxMQU+N4VFRVl9pdVq1Y53F9+16czMRkZGfr3v/9tHrefn58sFou2bduWbxvLly/XI488opYtW6patWrmtde7d29Nnz5dGRkZTpwdAAAAAMAVwwAAAAAAwIE5c+YYksx/a9eudct+3njjDSMgIMBuX5f/CwgIMCZOnFhoOytXrjTju3fvbmRlZRkPPvhgoe22b9/eSExMdJij1Wo1XnnlFYd5+vj4GC+99JKRm5tbYFvDhw834z/77DNj7dq1Rt26dfNt78yZM3bb/vnnn0a7du0KzUGS0bRpUyM2NrbAHA4ePGjGRkREGLm5ucarr75qeHl5Fdhm/fr1jbi4OIfnyjAMIyYmxqhatarDPCUZS5cuLbAdVx2vszZt2mTX7q5du0rcpq3MzEzjscceM3x8fBwek6+vr3Hu3Ll827lw4YIxevRow9vbu9A2goODjVmzZhWa02effWbGDx8+3Dh+/LjRrVu3fNtbtGiR3bbJycnGXXfd5fBYgoODja+++qrQPL777jun+0zt2rWLdN7zExERYbZ38OBBY8aMGYa/v3+B+6xatarx/fffO9W2u67TrKws4+GHH863rSeffLLE5+QS2/dSqfD/jZiWlmYMGjTI4bGGh4cbS5YsKbStcePGmfHjxo0z9uzZYzRv3rzQdh988EEjJyenwDYvP4eOuOq9yxljx441LBaLU/saPHiwcf78+ULbu/yzJTY21uH5e/XVV53K9YMPPij08y84ONj44Ycf8nwOl5Tt+1OnTp0MwzCMRx991HxsxYoVBW4bFRVlSDK8vb2NhIQEY+nSpUXqCwsXLjTCwsIcvjb9+vUzUlJSCmwnOzvbqF27tlOvc8WKFY25c+c6zO3jjz82AgMDnWrz+uuvz7eN7t27mzErV650uM/Lr09nYnbt2mW0bNky37z++OMPu22PHDlivmaF/atVq5axZs0ah/kCAAAAAK4MPgIAAAAAwAHbkUHq1avncBS04nj88cf1wQcfmOuVKlVSjx49FBYWpoSEBK1cuVJpaWnKzMzUCy+8oISEBE2ZMsWpth966CHNnj1bXl5e6tSpk5o1a6bc3FytX79ef/31lyRp69atuu+++7RkyZIC27FarRo0aJC++eYb87HatWurY8eOCg0NVVpamjZs2KC4uDjl5OTorbfeUmJiombMmOEwx/3792vMmDE6e/asKleurBtvvFG1atXSmTNntGbNGrvYNWvWqH///jp37pwkydfXV9ddd50aN24sX19fHTp0SGvXrlVmZqb++usvde3aVevWrVPz5s0d5jFhwgS99tprkqR27dqpdevW8vX11bZt27R161ZJ0sGDBzVgwABt3bpVPj4F/6+FJ554QtOmTTPXvb29zTwDAgKUmJiobdu2maNWZWZm5tuOO4+3IA0aNJDFYjFH5Zk4caJmz55d7PZspaWlqVevXlq3bp35WIUKFXT99derbt26MgxDx48f15YtW5SUlKQLFy7IarXmaSc3N1d33XWXfvjhB/OxatWqKSoqStWqVdPRo0e1cuVKZWdnKyUlRSNGjFBKSoqefPJJhzlmZWXp9ttv15YtW+Tj46OuXbuqYcOGysrKMvvBJQkJCbrpppu0e/du87GWLVuqbdu2qlSpkk6dOqVff/1VSUlJSklJUXR0tObOnashQ4bk2e/mzZs1cOBAc0SxwMBAde7cWZGRkfL399e5c+cUFxenHTt2mCMiudL3339vjkBWu3ZtdevWTZUqVdLevXv122+/KTc3V2fOnNHAgQP1448/qnfv3gW25c5++9RTT+njjz+WJLVu3Vpt27aVr6+v9u7dKy+v0p8wIT09XTfddJM2btxoPlarVi3dcMMNqlSpkvbv36+1a9fKarUqPj5et99+u+bPn6+BAwc6bPvs2bPq27evDh48KH9/f0VFRalu3bpKSkrSypUrzdElP/nkE2VmZjqc7tEZrnrvctbRo0dlGIYsFouaNm2qpk2bKiQkRL6+vkpKStIff/yhuLg4SdKCBQt07tw5LV68WBaLxWHbJ06cUM+ePRUfH6/g4GBzBLrTp09rxYoVOnv2rCTptddeU4sWLTRo0KAC2/r444/12GOPmeu+vr6KiopSRESEkpOTtWrVKiUnJ2vgwIF66623SnROnHHffffpww8/lHRxms8ePXrkiTl8+LA5wl6vXr1Us2bNIu1jypQpeuaZZ8zPgqCgIHXp0kV16tSR1WpVbGysNm/eLMMwtHjxYkVFRem3335ThQoV8rRltVrN0TkrVaqkli1bqkGDBgoKCtKFCxd07NgxrV+/XufOndP58+c1bNgw+fr6FviafPfdd3r44YfNddvcfHx8dPbsWe3du1c7d+5UdnZ2kY7blZKSktSnTx8dOXJEAQEB6tatmyIiIpSWlpZnVMDdu3fr5ptvVnx8vCTJYrGoffv2atGihQIDA3X8+HGtWbNGqampOnHihG655RYtXbo039ceAAAAAHCF8Wh5HAAAAACgTGjYsKE5YsXdd9/t8va//PJLu1ExRowYYZw9e9Yu5uzZs8bQoUPt4r755pt827MdueXSSEjXXXedsXv3bru43NxcY+rUqXZtrl69usA8X3nlFTMuLCzM+Oabb/IdIW3hwoVGlSpVzNgvv/wy3/ZsR7m5NJLWY489ZqSmptrFZWdnG1ar1TAMw4iPjzdq1KhhbnffffcZJ06cyNN2QkKCceedd5pxrVu3znd0IdtRhfz8/AyLxWI0bNjQ2LBhQ77H5evra8bPnj27wHMVExNjd16jo6ONI0eO5Bu7Y8cO44knnjB+/vnnPM+5+niL4sYbb7Q7httuu81YtmyZceHChRK1azvKlLe3tzFhwgQjLS0tT5zVajVWrFhh3HHHHfmOyjNp0iS7/F544QUjKyvLLiY+Pt7o1auXXT9bv359vnnZjlB0qT92797dOHjwYJ7YzMxMM8cePXqY23Xs2NHYunVrnviMjAxj/Pjx5ihRFStWNA4cOJAnbsCAAWZbd911l5GcnJxvrhkZGcZ//vMf4+GHH873+aKwHUHNz8/P8PLyMt5//33zmrskNjbWbgSgsLCwAvNz53V6abS8unXr5jt60KXXxhWcHUFt1KhRdvlNnTo1z/nbu3evce2115pxQUFB+fYtw7AffcnPz8+QZNxyyy1GfHy8XVx6errdKFqSjC+++CLfNp0dQc1V711F8c477xifffZZoaN4rlmzxmjUqJGZV2Gja9l+tlz6DHz++efzjLyWlJRk3HTTTWZsgwYNChz1c+/evXYjp3Xv3t04evSoXUxmZqYxZswYu9ftUmxJ5TeCmmEYRtOmTQ1JRuXKlfMdWe711183t5s/f75hGIbTI6gtW7bMHE3Uz8/PmDhxYr77+OOPP4wWLVqYbY4aNSrf9rKysoz777/fWLlypZGdnZ1vTGZmpvHOO++Y78HBwcF5vhNcYjs64+OPP17gyHqpqanGwoULjeeffz7f5909gtqlYxk4cKBx6tQpuzir1Wqei7S0NLuR/vr27Wvs378/T9tnz561e88JDw8vdOQ6AAAAAMCVgQI1AAAAAIBDttMQjh8/3qVtW61Wo379+nYFcAX9QJ6bm2vccccdZmzDhg3zFEEYRt6iisaNGxf4A69hGMbAgQPN2EceeSTfmIMHD5qFIdWqVcv3R1NbK1asMNts3rx5vsdkW0QgyRg5cmShbRqGYTzwwANm/BNPPFFobE5Ojl3xwYIFC/I9LtscQkJCjOPHjxfY5tixY83YPn365BuTnJxsVK5c2eE5dYarj7co1q1bZ1dkcelf5cqVjZtvvtl4/vnnja+//jpP0Uxh/vvf/9q1dalgoqjOnj1rVKpUyWxn7NixBcZmZmYa1113nRnbo0ePfONsC0AuFUulp6cXmoft9L+dO3d2GG9btJBfvwgJCTGLagq7Zl3JtkBNUqFTCMfHxxvVq1c3Y1955ZV849x9nVaoUMH466+/inagxeBMgdr+/fvtpgSePn16ge0lJycbkZGRZuz999+fb5xtP5FktGvXzsjIyCiwXdvi5cjIyHw/F5wpUHPle5c7HDx40CwS69ixY4Fxl3+2vPjiiwXGJiQkGBUrVjRjCypgvffee82Yli1bFjrN6MiRI+32784CtTfffNN8fN68eXm2a9KkiSHJqFKlitmHnClQs1qtRuPGjc24b7/9ttD84uPjjZo1axrSxWmZLy/eK6qJEyea+/7www/zPJ+ammo+X7du3UKnE3fE3QVqkoxevXrle13aeu2118z4O++802G8bT93NPU7AAAAAMDzSn/MfwAAAABAmXLu3Dlzuj1JCg4Odmn7v/zyiw4ePChJ8vPz07/+9a8Cpy2zWCz64IMP5OvrK0mKi4vTf//7X4f7mDhxoipVqlTg8w888IC5bDtFna1//vOf5jSLr776qho2bFjoPnv06GFO/7d792798ccfhcYHBATonXfeKTQmMTFR8+bNkySFhYVp0qRJhcZ7e3vrzTffNNc///zzQuMl6aWXXlKtWrUKfN72XG3atCnfmBkzZig1NVWSFBERoalTpzrcb35K43gL07lzZ3377bd5+nxqaqqWL1+uSZMmaeDAgQoPD1erVq309ttvm9MNFuT99983lwcNGqTBgwcXK7cvvvhCaWlpkqSaNWua07Lmx9/fX9OnTzfXV65caU5tW5hJkyYpMDCw0JjJkyebyx999JHD+BdeeME8n/Pnz1dubq7d85emw6xQoUKh16y71K9fX88880yBz4eFhenVV1811//973+bU/9dUhr99vHHH1eTJk0cxpWGTz75xHwd27Vrp0cffbTA2KpVq9qdjy+++MKcYrIw77//vgICAgp8fvLkyfL395ckHTp0yKnPhfy46r3LXSIjI82pDDdt2mReL4UJDQ2167OXq1mzpm677TZzPb/PwJSUFLuprd955518p7C0fb5ixYoOc3OFoUOHmt8ZLp/edf369dq7d68k6e677y60D13uxx9/1L59+yRJAwYM0J133llofFhYmDk98IULF7Rw4UKn95Wf+++/31xetmxZnudtX/uQkBCnpnv1pKlTpxY6/fCFCxfMzyl/f3999NFHDqcrfuutt8zjLunnPQAAAADA/ShQAwAAAAAU6tKP9Ze4umhkxYoV5vKtt96qsLCwQuNr166tPn36mOsrV64sND4gIED9+/cvNOaaa64xlw8dOpRvzJIlS8zle++9t9D2LrnpppvM5bVr1xYa26tXL1WtWrXQmGXLlik7O1uS9Le//c2pH9s7depkFgo4ykG6+CN+YZo1a2YWISUlJeXpH5L0008/mcsPPvigWThSVKVxvI7cdttt2rdvn1544YVCC/diY2P10ksvqWHDhgUWJmRlZWnVqlXm+ujRo4udl+11c8899zgsDOvYsaNat25trju6bqpWrapevXoVGhMfH69t27ZJklq0aKG2bds6yPri9dilSxdJ0tmzZ7Vz50675+vWrStJOnPmjL788kuH7bnavffeKx8fn0Jjhg4dKm9vb0nSiRMn8hT7lUa/LW5hozvY9sURI0Y4LJS58847Va1aNUkXr4l169YVGl+nTh2zKKsgoaGhuvXWW811R/27IK567yqJI0eO6Ouvv9Zbb72l5557TqNHj9bjjz9u/rtU0G0Yhv7880+H7fXv399hH3T0Gfj7778rKytLklSjRg27z+D8VK1aVbfffrvD3FyhXr16ioqKkiQtX75c8fHx5nOzZ882l++7774itevuz/zc3Fxt2rRJn3zyicaNG6ennnrK7nW2LTq+9D5rq3r16ubrunPnTv32229O5egJbdq0UfPmzQuN2bx5s06dOiVJuvnmm1WjRg2H7daqVUvNmjWTdPEcOFPsCgAAAADwnML/jxsAAAAA4KpXuXJlu/VLoza5iu3IYl27dnVqm+uvv14//vijJGnr1q2FxjZt2tQcca0gISEh5nJ+I9IkJSWZo7D4+flpwoQJTuW5a9cuc/no0aOFxl577bUO27Mt5Ni+fbsef/xxp/K45MyZMzp//nyBI9tUqVLFLBAqiMViUdWqVZWRkSHp4vm6vI9s2LDBXHZUWFIYdx+vs6pXr663335bb775prZs2aI1a9Zo48aN2rp1q/bv328Xm5ycrEGDBiktLc1utDnpYpFBZmampIsjhHXq1KnYORX3utmxY4ckx9dNu3btzCKsgti+PhkZGU6/PnFxceby0aNH1aZNG3M9OjpaEydOlHSx8O7LL7/UoEGD1KNHD6cKFkrqUvFcYapWraqmTZua1/cff/xhFklI7u+3vr6+dsWGnmQYhl3xjDN90dfXVx07djSLwbZu3VpowVPnzp2dGh2qS5cuWrRokSQ5HLGyIK567yqOdevW6YUXXtCvv/6aZ1S+gpw+fdphjDN9xdFnoO357Nixo8ORraSLr8f8+fMdxrnCfffdp5UrV8pqtWrevHl69tlnlZ2dbRa51q9fX926dStSm7bX8TfffKPVq1c73Ma2QKqgz/ycnBz961//0pQpU3Ts2DGncsnvdfbz89OAAQO0YMEC5eTk6KabbtKgQYM0cOBA3XjjjS4f7bYkivr95tixY06/b14atdQwDB07dkxVqlQpVo4AAAAAAPejQA0AAAAAUKigoCD5+PiY03w6msKwqBITE83liIgIp7aJjIw0lx39QO/Mj5W2BWy205leYjsiS3Z2tj744AMnsrR35syZQp8PDQ112MaJEyfM5bVr1xZrhLAzZ84UWqDmDNvzdeHCBbvnzp07ZxavSVKDBg2KnOMl7j7eovLy8tJ1112n6667znwsISFB33//vSZPnmwWMUrSY489pt69e6t27drmYydPnjSX69at63CkrsK4+7opan88ePCgS66Ll19+WatWrdL69etlGIYWLVpkFh01btxYN9xwg26++Wb1798/T2GkK9SrV8/puEsFaravheT+flu1atUS9R1XOnv2rN17gDv6YlFek0suf02c4cr3rqKaOXOmRo4c6XRh2iX5jWB5uaJ+Bl7+ni7Zn8/ivB7uNnDgQD322GNKT0/X3Llz9eyzz+rHH38031+GDRtW5Ckwba/j4ozmmN9nflZWlm6//Xb98ssvRWqroNd5ypQp2rJli/bt26fs7GzNnTtXc+fOlZeXl1q2bKkbbrhBt9xyi/r27euR0QAvKernyfbt27V9+/Yi78fR9ywAAAAAgGcxxScAAAAAwCHbogPbUcFcwXZENmcLiWzjHP1AX9QfpfPjimmj8it8s+VoisbSyMMV58qVU8KWxnkvqbCwMD388MPasWOH7rnnHvPxzMxMzZgxwy7W9tyUdKpcd183nuqPFStW1OrVq/Xuu+/aFTFJ0r59+zRz5kwNGTJEYWFheu655+wKilyhQoUKTsUVdi7d3W+deW1Ky+UjarqjL7riNXGGu6ezLsiuXbv08MMPm8VpLVu21D//+U9t3LhRJ0+eVEZGhgzDMP8NHz7c3DY3N9dh+654X7d9nYvzerhbpUqV9Le//U2StGPHDv3xxx+aM2eO+XxRp/eUSn4d53cNT5gwwSxOs1gsGjRokBYuXKjdu3fr7Nmzys7OtnutLymocDEsLEybN2/Wyy+/rJo1a5qP5+bmaseOHfrwww915513Kjw8XBMnTpTVai3RMRXXlfD9BgAAAADgeRSoAQAAAAAcsp0ay3YKNFewLQI4f/68U9vYxrljFKXL2f7QHhQUZPcDsrP/Zs2a5dI8Jk+eXKw8Li/6cTVXTglbFo73Ej8/P33yySeqVq2a+divv/5qF2N7bko6Ve6VcN3Yvj633357sV6fESNG5GnXz89PY8eO1YEDB7Rt2zb961//0uDBg+1Go0tPT9e7776rHj16uLRILT093am4ws5lWeq3JXV5EZc7+qIrXhNnuHs664JMnTrVLKzp3bu3tm7dqieeeELXXXedatSooYCAALv44hTflZTt61yc16M02Bahvf/++1q6dKmki1MbN2zYsMjt2V7HW7duLfI1fOjQIbv2srKyNG3aNHN91qxZWrBgge6++241a9ZMQUFBdiPZOfs6BwUF6fXXX9fx48e1fv16vfvuuxowYICqV69uxpw5c0Yvvvii7rrrriKP0pcfZwoji8r2fD/xxBPFet+MiopyeV4AAAAAANehQA0AAAAA4NBNN91kLh8+fFi///67y9q2nfrpyJEjTm1j+8Ov7Y+w7mI7Msm5c+ec/oHenXkkJCR4JAdHgoKC7EZLOXjwYLHbKgvHa6tixYp2xZy2U8NK9sdz9OjREo32ciVcN+5+fSwWi9q2bavRo0dr/vz5OnbsmLZu3ar777/fjNmwYUOxphYtiLPn8ujRo+by5eeyrPXbkqhSpYpdUY07+qIrXhNnuPK9qyiWL19uLr/xxhvy8/MrNP7w4cPuTimP4rzf2L4epeHmm282i1g///xzc6rS4oyeJrn+Ot64caNZ9NiyZUuHeRX1dfb29lanTp00duxYLVq0SCdPntSvv/6q22+/3Yz5/vvv9c033+TZ1tE055dzxWhnl7ua3jcBAAAA4GpFgRoAAAAAwKG7777b7gf/yZMnu6zta665xlx2tvDNNq59+/Yuy6Ug4eHhqlu3br77L02dOnUyl3/77TeP5OAM2zxXrFjhknau5OO1ZTvakb+/v91z7dq1M59PT08v0WiEV8J1Y/v6bNu2rVRGTLrmmms0c+ZMjRw50nzshx9+cFn769evdxiTkpKiPXv2mOuXn8uy2G+Ly2KxqF27dua6M30xJydHmzZtMtcd9UVnr5N169Y53WZBXPXeVRQnTpwwl1u3bl1o7NmzZ7V9+3Z3p5SH7fvNpk2bnBpBy/b1KA1eXl4aMmSI3WMBAQGKjo4uVnuuvo6L8jpL0po1a0q0Py8vL3Xr1k3fffedbrnlFvPx/N4vg4KCzOWkpCSHbe/YsaNEueXH9nz//vvvLhnpDQAAAABwZaFADQAAAADgUGBgoJ544glz/Ztvvsl3FA5Hzp8/n6eAwXZ0tiVLlujUqVOFtnHixAlz6q7Lt3enfv36mcsffvhhqezzcr1795aPj4+kiz/g/vnnnx7Jw5G+ffuay5988omysrKK1U5ZOV5btjnWq1fP7jl/f3/16NHDXJ8+fXqx92Pb7xcsWKDMzMxC4zdv3mxX2GKbR3E1aNBAzZs3lyRlZ2fr3//+d4nbdJbtqEAnT550Wbvz58+X1WotNObzzz83Y8LDw9W0aVO758tivy0J2744e/Zsh4Ul3333nVkEExAQoC5duhQaf/ToUa1atarQmNOnT2vJkiXmenH7t6veu4rCy+v///eso9E5P/30U3NksNLUtWtXs+D25MmT+uWXXwqNP3v2rEsLR511+ahk/fv3V3BwcLHasv3MnzlzpsP3WEeK8jrn5uZqxowZJdrfJRaLRf379zfX83u/tJ1SeNu2bYW2d+LECa1du9Yludm6/vrrzdfq2LFj+vHHH12+DwAAAACAZ1GgBgAAAABwynPPPWc3Ks2wYcOK9APizp071blz5zw/bPfq1Uv169eXJGVlZWnMmDEFtmEYhkaPHm3+QN+wYUP17NmzCEdRfM8884y8vb0lSYsWLdKsWbOc3tZV01XVrl1bQ4cOlXTxXNx33306d+6cU9vm5uYqMTHRJXk48uCDD6pSpUqSLk5TVthrWhhPHu+hQ4f08ssvKzk52elt5s6dq7/++stc79OnT56Yp59+2lxesGCBFixYUKz87r33XvMcx8fHa8KECQXGZmdna/To0eZ6jx498hRVFdfzzz9vLr/88stFGlnn8usiKyvLnALPEdvpA2vUqOH0Ph2Ji4vTlClTCnz+5MmTeu2118z1v//977JYLHYxZeU6dZUHH3zQLL7ZunVroYU1KSkpeu6558z1e+65R1WqVHG4j7FjxxZaLDZ27FizgCgiIsJuxKiicNV7V1E0aNDAXC6sqGvfvn2FXufuFBwcrLvuustcf+6555SRkVFg/PPPP+/0texKLVu21NatW7Vp0yZt2rRJ06ZNK3Zbd911lxo1aiTp4nvso48+6vSoXmlpaXlGlLR9nVevXl3oNJnvvvuuw8LW1NRUZWdnO5WPo/dL29HL5s+fX+i19tRTT7mlSNLf39/uenv00Ud1/Phxp7d3ZaEyAAAAAMA9KFADAAAAADjF399fX331lfnjZkZGhgYMGKD77rtPu3fvzncbwzC0adMmDR8+XG3bttXOnTvzxHh5eWnixInm+vz58/Xggw/m+XE7NTVV999/v7799lvzsXfeecduVBJ3atiwoV5++WVz/YEHHtDYsWN1+vTpfONzcnL0yy+/aNiwYXbTo5XUm2++qfDwcEnS9u3b1bFjx0JHszl27JimTJmipk2b6ssvv3RZHoWpWrWqJk2aZK5/9NFHGjRokI4dO5ZvfGxsrJ588sl8j8NTx5uZmak333xTkZGReuihh7R27Vrl5OTkG5uamqq33npLDzzwgPlY7dq184zmI0k9e/bU3Xffba4PHTpUr732Wr4j6uTm5mrlypW688478xQzBAUF6ZVXXjHXJ06cqFdeeSVPwcLJkyd1xx13mFNX+vj46O2333biDDhn6NCh5ghaqamp6tatmz7++OMCCyfOnTunzz//XFFRUXZFc9LFIpC6detq7Nix2rx5c4H7/O9//6tx48aZ67ajXpWUn5+fnn/+ef3zn//MM43h7t27dcstt5ijPNasWVNPPfVUvu2UhevUVRo2bKiHH37YXH/88cf1wQcf5Dl/+/fvV69evXTw4EFJF/vwq6++6rB9Pz8/bdmyRQMGDMhThJKZmaknnnhCs2fPNh978803i/254Mr3LmfZjm719NNP6+eff84Ts3z5ckVFRSk1NVUVK1Ys9r5K4tVXXzVHUduxY4duu+22PAVEWVlZGjt2rD7++GP5+fl5Ik1dc8016tChgzp06KCaNWsWux1vb2/FxMSYhemfffaZbrvttgK/70gXRx97/vnnVbduXbOf2+ZVu3ZtSRdHmLv77rvtpv2ULp6/V199VS+88ILD13nLli2KjIzU+PHjtWvXrnxjrFarvvzyS7tCvfzeL/v166fKlStLuliYOXLkyDwFiMnJybrvvvu0cOHCPNNXu8ozzzyjli1bSpKOHz+uDh066KuvvipwStnTp09rxowZat++vd5991235AQAAAAAcB0fTycAAAAAACg7GjRooA0bNqh///7auXOncnNzNXfuXM2dO1eRkZFq06aNqlevLqvVqoSEBG3bti1PQcGlH0FtRUdHa82aNfrggw8kXZzG7Msvv1SPHj1Us2ZNnTp1SsuXL7crWhszZoz+9re/ufeALzNu3DgdOnTInMbu/fff17Rp09ShQwc1bNhQFSpU0Llz53To0CFt377dHEElJCTEZTnUqlVL33//vW699VadPn1af/31l3r37q3atWurY8eOCg0N1YULF3T69Gnt3Lkzz4/kpeXRRx/Vzp07FRMTI0lauHChvvnmG1133XVq0qSJAgIClJiYqD/++EOHDh2SlP+0fJ4+3tTUVH3yySf65JNPVLFiRbVv3161a9dWcHCwMjIydODAAW3atMlu+reKFSvqiy++MEdiutynn36qw4cPa+PGjbJarRo3bpzeeecdXX/99apbt64Mw9Dx48e1efNmcyrE/EbuGTt2rNauXWuOZPjGG28oJiZGPXr0UNWqVXX06FGtXLnSbjScd9991260nJLy9vbWwoULdcstt+iPP/7QuXPn9Mgjj+i5555Tly5dVLt2bXl7e+vMmTP666+/tHv3brPQz3ZEpktSUlL0/vvv6/3331e1atXMoo6AgACdOnVK27dv14EDB8z4Jk2a6Mknn3TZ8bzzzjsaM2aMxowZo/fee0/dunVTpUqVtHfvXq1du9YslPDx8dHMmTNVrVq1fNvxdL8tbe+99542b96sTZs2KScnR48//rgmTpxonr+4uDitWbPGnBrVx8dH//73v+2mFizIqFGj9P333+unn35SZGSkoqKiVLduXSUlJWnlypU6c+aMGXvvvfdqyJAhJToWV713OWvMmDH69NNPlZiYqOTkZPXp00ft27dXixYtZLFYtHXrVsXGxkq6OH1sjRo1NHfu3BIdY3E0bdpUkydP1mOPPSZJWrlypRo0aKCoqChFRETozJkzWrlypZKSkuTn56c333xTzz77bKnn6Uo9e/ZUTEyMRo0aJavVqqVLl+qnn35SixYt1KZNGwUFBSk9PV3x8fH6888/Cx390MvLS6+//rpZyPzf//5XTZo0UdeuXRUREaGkpCStWrXK7M8zZsxw2JcvjZ45YcIEhYWFqV27dgoLC5OPj49OnjypLVu22BXB3XDDDRo8eHCedipUqKBXXnnFHN1w3rx5+uWXX9SjRw8FBQXp6NGjWrNmjdLT09WqVSv17t1b77//fpHPpyOVKlXSDz/8oJ49e+rgwYNKSEhQdHS0qlevrs6dOyssLEyGYSg5OVm7du3Svn37zPfk0pruHQAAAABQAgYAAAAAAEWUmppqvPbaa0ZwcLAhyal/bdu2NRYtWlRou6+//rrh7+9faDsBAQHGW2+9VWg7K1euNOO7d+/u1DHZ7sORf/3rX0bVqlWdOm6LxWLcfvvt+bYzfPhwM+6zzz5zKs9LDh06ZNx8881On/+aNWsaP/30U552Dh48aMZEREQ4te+IiAhzm4MHDxYaO3XqVCMoKMip8/Tzzz+7/XidderUKaNv376Gn5+f0/uUZHTq1MnYtm2bw/bT09ONBx980PD29nbYZkBAgHHu3Ll827lw4YLx+OOPO2ynSpUqDvvYZ599ZsYPHz68SOcrPT3deOSRRwwfHx+nzlNgYGCe6/jYsWMOr3/bf1FRUUZ8fHyR8szP5f05Jiam0Nc9ODjY+Pbbb51q25PXqSvYvpc6em9MTU01oqOjHR5jeHi4sWTJkkLbGjdunBk/btw4Y/fu3UbTpk0LbfeBBx4wLly4UGCbRT2Hrnrvcsbvv/9uVK9evdD9DBgwwEhJSXHqc6Oony1Fufb/9a9/FXqdVqlSxfj++++L9TnsbI6dOnUqUVtLly4tUl9YsWKF0bhxY6ev45YtWxrHjx/Pt62XXnrJ4fv9Rx99ZBhG4d9L1q9f7/T7rSRj4MCBBX6OGIZhWK1WY+TIkYW20blzZ+PYsWN5rs/8OBNTkKSkJOPuu+82LBaLU8cWHBxszJo1q0j7AAAAAACUPkZQAwAAAAAUWaVKlfTKK6/oiSee0JIlS/Tf//5XW7Zs0alTp5ScnCw/Pz9Vq1ZNzZo1U6dOnTRgwAC1b9/eYbsvv/yyhg0bpk8//VQ///yzDh48qJSUFAUHB6tBgwbq3bu3Ro4cqXr16pXCURZs9OjRGjFihObOnav//ve/5sgpmZmZqly5surUqaOWLVsqKipKt956q+rWrevyHCIiIrRs2TKtW7dOX331ldasWaOjR4/qzJkz8vHxUUhIiBo3bqwOHTqoV69eioqKko9P6f9vgCeffFJDhw7VrFmz9PPPP2vXrl3mtKjVq1dX8+bN1b17dw0aNEiNGzcusJ3SPt7Q0FAtWbJE586d0+rVq7V27Vr9+eef2rdvnxITE5Wenq6AgAAFBwercePGuvbaa3XXXXepS5cuTrUfGBioGTNm6Omnn9acOXO0fPlyHTp0yLx+wsPD1aZNG91yyy0aNGhQviMPShdHopo2bZoeeeQRzZw5U8uXL9fRo0eVmpqqatWqqUmTJrr11lv14IMPunQkv/yOJyYmRs8//7zmzZunFStWaO/evUpKSlJubq6qVKmiBg0aqG3btrr55pvVp08fBQUF2bVRu3ZtJSUlacWKFfr111+1ZcsW7d+/X4mJicrOzlblypUVERGh6667ToMGDVLPnj3dciyPPPKIbrjhBn300UdatmyZOb1jZGSk+vfvr9GjR5vTdzpSVq5TV6hUqZK+/PJLjRkzRnPnztWqVat04sQJZWRkqHr16mrVqpX69eunBx54oMjTVDZr1kybNm3SzJkztXDhQu3fv18pKSmqWbOmrr/+ej300EMlGsUsP65673JGly5dFBsbq6lTp+rHH380RwkMDw/Xtddeq6FDh9pNBepJo0ePVu/evTV9+nT99NNPOnbsmPz9/VW3bl3169dPjzzyiOrVq6dVq1Z5OlWX6dGjh3bv3q3vvvtO//nPf7R+/XolJCTo3LlzqlChgmrWrKlmzZqpa9eu6tu3r9q1a1dgW2+++ab69u2r6dOna+3atUpMTDS/N/Tp00d///vfnepPnTp10qlTp7Rs2TKtXbtWf/zxh+Li4pSUlCSr1aqgoCA1bNhQnTt31tChQ9WxY8dC2/Py8tInn3yiO++8UzNmzNCGDRuUlJSkkJAQNW/eXEOHDtWwYcPk6+tb1NNXZNWqVdPChQu1c+dOzZ8/X6tWrdLBgweVlJQkLy8vBQcHq1GjRmrfvr169uypW265RQEBAW7PCwAAAABQMhbDyGeOCAAAAAAAAOAqEBkZqcOHD0uSDh486NS0k3Cv8ePHa8KECZIuTq08fvx4zyYEAAAAAACAEvHydAIAAAAAAAAAAAAAAAAAgPKJAjUAAAAAAAAAAAAAAAAAgFtQoAYAAAAAAAAAAAAAAAAAcAsK1AAAAAAAAAAAAAAAAAAAbkGBGgAAAAAAAAAAAAAAAADALShQAwAAAAAAAAAAAAAAAAC4hcUwDMPTSQAAAAAAAAAAAAAAAAAAyh9GUAMAAAAAAAAAAAAAAAAAuAUFagAAAAAAAAAAAAAAAAAAt6BADQAAAAAAAAAAAAAAAADgFhSoAQAAAAAAAAAAAAAAAADcggI1AAAAAAAAAAAAAAAAAIBbUKAGAAAAAAAAAAAAAAAAAHALCtQAAAAAAAAAAAAAAAAAAG5BgRoAAAAAAAAAAAAAAAAAwC0oUAMAAAAAAAAAAAAAAAAAuAUFagAAAAAAAAAAAAAAAAAAt6BADQAAAAAAAAAAAAAAAADgFhSoAQAAAAAAAAAAAAAAAADcggI1AAAAAAAAAAAAAAAAAIBbUKAGAAAAAAAAAAAAAAAAAHALCtQAAAAAAAAAAAAAAAAAAG5BgRoAAAAAAAAAAAAAAAAAwC0oUAMAAAAAAAAAAAAAAAAAuAUFagAAAAAAAAAAAAAAAAAAt6BADQAAAAAAAECZERkZKYvFIovFoqioKE+nAwAAAAAAAAcoUAMAAAAAAAAAAAAAAAAAuAUFagAAAAAAAAAAAAAAAAAAt6BADQAAAAAAAAAAAAAAAADgFhSoAQAAAAAAAAAAAAAAAADcwmIYhuHpJAAAAAAAAAAAAAAAAAAA5Q8jqAEAAAAAAAAAAAAAAAAA3IICNQAAAAAAAAAAAAAAAACAW/h4OgEAAEqT1WrVli1btG/fPiUmJur8+fOqXLmyIiMj1bZtW0VERHg6RQAAAADlEPci/+/IkSPatGmTEhMTlZycLH9/f9WoUUMtWrRQ27Zt5ePD/7IEAAAArga5ubn6/fffFRcXp/j4eAUGBqp169a68cYbC70vMAxDmzdv1tatW5WUlKRKlSqpUaNGuummmxQQEFCsXHJycrR7927t3r1b8fHxSktLU4UKFVStWjW1atVK7dq1k7e3d3EPVdnZ2dq+fbtiY2OVlJSk8+fPKzAwUFWqVFFERISaN2+uunXrFqnN9PR0bdu2Tbt379aZM2eUmZmpwMBAVa1aVZGRkWrVqpVq1KhR7JwBwJX4vz0AgKvC/v379cYbb+i7777T2bNnC4xr1KiR7r77bo0aNarINwLOGjFihGbPnm2ub9u2TW3bti1SG6+88oreeOMNc/3HH39Uv379XJYjAAAAANe4ku5FLrn8nsQwDKe3jYyM1OHDhyVJ3bt316pVq5zaLiMjQzExMfr444+1d+/eAuOCgoLUu3dvPfzww7r55ptdmgMAAABQ1nniu3xJWSwWc3n48OGaNWuWLly4oClTpmj69Ok6evRonm1q1aqlyZMna9CgQXmemz17tsaPH69Dhw7lea5y5coaN26cnnrqKXl5OZ5M7uzZs/r222/17bffavXq1UpNTS0wNigoSA888ICeffZZ1apVy2HblyQmJur111/X559/ruTk5EJj69Spo9tuu01PPfWUmjZtWmDcoUOHNG7cOH3zzTc6f/58oW02atRIt99+u5555pki5Q0ArsYUnwCAcs0wDL3yyitq3ry5Zs+eXegPQtLFH4/efvttvf/++27Lafjw4Xbrc+bMKdL2hmFo7ty55nrNmjXVp08fl+QGAAAAwDWuxHsRT1m7dq0aNWqkZ555ptDiNEk6d+6cvvrqK911112llB0AAACA0pSWlqZevXrp+eefz7c4TZJOnDihwYMHa+LEieZjOTk5GjJkiEaMGJFvcZokpaamauzYsXrwwQedKt7r37+/HnjgAS1evLjQ4jTp4r3K1KlT1bp1a61YscJh25K0YcMGNWvWTNOmTXNYnCZJx44d08cff6ylS5cWGPPDDz+oRYsWmjNnjsPiNOnivebkyZO1ceNGp3IGAHdhBDUAQLlltVo1ePBgff3113mea9q0qRo1aqQqVaro3Llz2rdvn/bu3VukvzYqrqioKEVERJh/qfT5559r0qRJTk9js2rVKnNbSRoyZAhT4AAAAABXkCv1XsQTvvrqKw0dOlTZ2dl2j1etWlXt27dXaGiosrOzFR8frz///FPp6ekeyhQAAACAuxmGocGDB5ujt1WqVEmdO3dWaGiokpOT9fvvv9sVir300kvq3LmzoqKi9Mgjj+iLL76QJPn5+alTp06qXbu2zp8/r3Xr1un06dPmdjNnztQNN9ygESNGFJpPbm6u3XrNmjXVokULVatWTQEBAUpJSdGuXbt08OBBMyY5OVm33nqrNmzYUOjsOKdOnVLfvn115swZu8cbN26spk2bqkqVKsrOzlZKSor27NlTYLGerV27dunuu++2u7+yWCxq0aKFGjZsqKCgIGVmZio5OVm7du1SQkKCwzYBoLTwazYAoNx69dVX7X4Qslgsuv/++/Xyyy+rfv36eeKTk5O1aNEiffzxx27Ny2Kx6L777tPrr78uSTp58qR+/vln3XbbbU5tf/mIa45usAAAAACUriv1XqS0bd++XcOHD7f78aRNmzaaOHGievXqJW9vb7t4q9Wq1atXa+7cufrPf/5T2ukCAAAAcLMffvhBKSkp8vPz0+uvv64nnnhCAQEB5vNpaWl6/PHHzWlMDcPQCy+8oKefflr//ve/ZbFY9Oyzz+qll15SlSpVzO0uXLigV155RZMmTTIfe+mllzRs2LA89x22LBaLunbtqqFDh6pfv36qW7duvnE7d+7Uyy+/rO+//16SlJWVpaFDh2r79u12U5jaevfdd+2K0/r06aMpU6aoWbNm+cafPHlSS5YsMY8zP+PGjbO7vxo2bJjeeust1alTJ9/4w4cPa/HixZoxY0a+zwNAabIY5fXPMwEAV7VNmzapU6dO5igEPj4+mj17tu69916ntj958qRq1qzptvzi4uLUqFEjc/3uu+/WwoULHW53/vx5hYWFKS0tTZJ0zTXXaOvWrW7LEwAAAEDRXOn3ItLFP3K59IOPpCKN3hYZGWmO6Ny9e3dz5IPLGYahtm3baseOHeZjd955p+bPny9/f3+H+ynsPDibAwAAAFDelMZ3eVe7vNjKy8tLP/74o2699dZ84w3DUNeuXbV+/XrzseDgYKWkpOiTTz7RyJEjC9zXwIED9c0335jrS5YsUd++fQuMP3z4sCIiIpw9FD3xxBOaNm2aU+03b95ce/bskSQ1a9ZM27dvl6+vr1P7yczMtCvcky6O9la5cmVz1Ombb75Zy5Ytczr3/NoEgNLk5ekEAABwh7feesvuxuwf//iH0z8ISXL7D0INGzZUt27dzPUffvghzzDP+fn222/N4jSJ0dMAAACAK82Vfi9SWn744Qe74rTmzZvr888/d6o4TSo/5wEAAACAvccee6zA4jTpYkHbmDFj7B5LSUnRgAEDCi1Ok6SxY8farTsqwitKcZp0cVS08PBwc/3LL78sMPbIkSPmcr9+/ZwuTpOUbyFZUlKSWZwmXfwDoKKgOA2Ap1GgBgAod06dOmUOsyxd/GHjpZde8mBG+Rs+fLi5nJWVVeiNzCW203v6+voW6YcuAAAAAO5VVu5FSsMnn3xitz5x4kQFBgZ6KBsAAAAAV4qnn37aYcxNN91UrO06deqkihUrmut//vln0ZJzwN/fX3369DHXN2zY4NR2iYmJLs3DXW0CgDtRoAYAKHdWr15tN2LBfffdJz8/Pw9mlL/o6Gi7H2hsh+XOz7Fjx7RixQpz/bbbblP16tXdlh8AAACAoikr9yLuZrVa9euvv5rrYWFh6tevnwczAgAAAHAlaNKkiSIjIx3GhYaGqnLlyuZ6xYoV1bVrV4fbWSwWNWjQwFwvbhHXhQsXlJycrCNHjujQoUN2/2wL4Pbu3avc3Nx822jatKm5/NVXX2njxo3FyuWS6tWrKyQkxFz/6KOPdODAgRK1CQCliQI1AEC5c/lfrNxwww0eyqRwQUFBdkMwr1+/Xnv37i0wfu7cuXY3OrYjsAEAAADwvLJyL+Juu3fv1rlz58z1rl27ysuL/w0JAAAAXO2aNWvmdGxQUJC53LBhQ3l7exd5O9v7ksIkJSXpo48+Uv/+/VWvXj35+fkpJCREERERql+/vt2/6dOnm9vl5uYWuI/Bgweby+np6erWrZtGjBihX375RVlZWU7lZctisSg6OtpcP3nypNq2bavRo0fr119/VU5OTpHbBIDSxP8ZAgCUOwkJCXbrzZs391Amjo0YMcJu3XYKz8vZPle9enXddttt7koLAAAAQDGUpXsRd+I8AAAAAMhPlSpVnI718fEp8XYXLlwoNDY3N1fvvvuuIiMjNWrUKC1evFhHjx51el9SwUVwo0eP1rXXXmuXy+zZs9W7d28FBwcrKipK//jHP/Tzzz/r/PnzTu1rwoQJioiIMNfT0tI0ffp03XjjjapWrZp69+6t1157TatXr1Z2dnaRjgMA3I0CNQBAuZOUlGS3Hhwc7JlEnHDzzTerTp065vrcuXPtpgS6ZOPGjdqzZ4+5fu+998rX17dUcgQAAADgnLJ0L+JOnAcAAAAA+SnuyMruGJHZMAz9/e9/13PPPae0tLRit1PQFJ+BgYFasWKFhgwZIovFYvdcZmamVq9erbfeekt9+vRRjRo1dM8992jz5s2F7is0NFTr1q1Tnz598jyXmpqqX375RePGjVNUVJRq1qypBx98sNCZewCgNFGgBgAo9y7/4n8l8fLy0rBhw8z1I0eOaOXKlXniZs+ebbfO9J4AAADAle9KvhcpTZwHAAAAAFeaOXPmaNasWea6xWJRr169NH36dK1bt05Hjx5VamqqcnJyZBiG+W/cuHFO7yMoKEjz5s3T9u3b9fTTTxc4xWl6eroWLFig6667TqNGjSp05Lfw8HAtXbpU69at0yOPPKLIyMh841JSUvTpp5+qRYsWeu2115zOGQDchQI1AEC5U61aNbv1lJQUzyTipMuLzS4vRsvOztaCBQvM9datW6t9+/alkhsAAAAA55W1e5HiKGh0AFtXw3kAAAAAyhpnvstfTV5//XVz2dvbW99++61+/vlnPfbYY+rcubPq1KmjSpUqydvb22671NTUIu+rVatWev/997V7924lJCTo22+/1ZgxY9SqVas8sR999JFGjx7tsM3OnTsrJiZGBw8e1JEjRzR//nyNGjVKDRo0sIuzWq0aN26cJk6cWOS8AcCVKFADAJQ7YWFhduu7d+/2UCbOadq0qTp16mSuf/PNN3bDSS9evFjJycnmOqOnAQAAAFemsnIv4uPjY7eek5Pj9LbOFJuVlfMAAAAAlDXu/i5/tfjrr78UFxdnrt9///0aMGCAU9smJCSUaN81a9bUnXfeqSlTpmjHjh3as2eP7r//fruYGTNmaNeuXU63WbduXQ0ePFgffvih4uLitGnTJvXv398u5vXXX1dSUlKJcgeAkqBADQBQ7nTp0sVu/ddff/VQJs4bMWKEuXz+/Hl988035rrtiGo+Pj4aOnRoaaYGAAAAwEll5V4kKCjIbt3ZH6qOHz/u1GgBLVq0sNvHb7/9xmgNAAAAgAu4+7v81WL//v12671793Z62/Xr17s0l6ZNm2rmzJkaOXKk+ZhhGFq8eHGx2+zQoYO+++479erVy3wsPT1dy5cvL1GuAFASFKgBAMqd7t27y8vr/z/i5syZowsXLngwI8cGDx4sf39/c33OnDmSpNOnT2vp0qXm471791bNmjVLPT8AAAAAjpWVe5HQ0FC79T179ji13U8//eRUnLe3t2688UZzPSEhQf/5z3+cTxAAAABAvtz9Xf5qcfbsWbv1ywv/CrJ+/XodOHDAHSnlmT3n0KFDJWrPy8tLw4YNc2mbAFASFKgBAMqd0NBQu6GYExISNHHiRM8l5ITg4GDdcccd5vrKlSt15MgRffHFF3Y/aNmOtAYAAADgylJW7kXatm1rt+7Mj1XZ2dmaPHmy0/t46KGH7NZffPFFZWZmOr09AAAAgLxK47v81SA4ONhufe/evQ63MQxDL7/8spsyylsk5+fnd0W2CQDFRYEaAKBcevHFF2WxWMz11157TV9++aXT2588edIdaRXK9q9jDMPQ3LlzzZHUJKlatWrq379/qecFAAAAwHll4V6kS5cudiM4x8TEKDExscB4wzD05JNPateuXU7vo1+/fmrTpo25Hhsbq2HDhik7O9up7T1xTwYAAABc6Urju/zVoHXr1nbrH374ocM/qHnppZecniLz9OnT+ve//62srCync/r888/t1ps2bWq3/tdff+mrr76S1Wp1WZsAUJooUAMAlEsdOnTQSy+9ZK7n5OTonnvu0UMPPVTgEMbJycmaOXOmOnbsqLfffruUMv1/vXv3VlhYmLk+depUbdmyxVy/fBpQAAAAAFeesnAvUrVqVd155512++/Vq1e+0wPt27dPAwYM0EcffSRfX19VqFDBqX1YLBbNmzdPgYGB5mNff/21OnfurJ9//lm5ubl5trFarVq5cqXuv/9+u+I2AAAAABeVxnf5q0HdunXVsWNHc3337t3q16+fDh8+nCf2wIEDuvvuu83RsatXr+6w/bS0NI0cOVIREREaM2aM1q5dazdbjq2zZ8/qH//4h9577z3zsYCAAN111112cfHx8YqOjlajRo30j3/8Q1u3bi2wWC0hIUEPPfSQFi5caD5Ws2ZN9ezZ02HuAOAuFsMwDE8nAQCAO1itVg0aNEjffPNNnueaN2+uRo0aKSgoSOfOndO+ffu0d+9e80eSJ598UlOnTi3ljKVnn33W7ibE1oYNG+xumAAAAABcmcrCvUhcXJxat26tjIwM8zEvLy916NBBDRo0UHZ2tvbt26cdO3aYz0+bNk3vvfee+aNN9+7dtWrVqkL3s3DhwnxHTqtWrZrat2+v0NBQZWdnKz4+Xtu2bVN6erokqUqVKkpJScm3zcjIyCLlAAAAAJQnpfVd3lVsR5gePny4Zs2a5dR2xf3eHxUVpdWrV0uSIiIiCvxDoWXLlqlXr16yLZfw9vY2z2NWVpbi4uL0559/ms936dJFPXr00FtvvWU+dvDgQUVGRtq1fejQIdWvX9/uMX9/f7Vq1Uq1atVSlSpVlJWVpcOHD+uPP/7IU7w2depUPfnkk3aPrVq1Sj169LB7rEKFCmrTpo1q1qypypUrKyMjQ3Fxcdq+fbvdHwVZLBZ9++23GjBgQP4nDQBKgY+nEwAAwF28vb21cOFCvfjii3rvvffsvozv3r1bu3fv9mB2+RsxYkS+BWrNmzenOA0AAAAoI8rCvUjDhg01d+5c3XPPPeaPIbm5udq4caM2btxoF2uxWPTGG2/o8ccfL/APagoSHR2tmjVratCgQXbTdiYnJ2vZsmUlPxAAAADgKlNa3+XLu549e2ry5Ml6+umnzSI1q9WqDRs2aMOGDXniO3furB9//FHTpk0r1v6ysrK0ZcsWu5lzLufj46O33norT3FaQdLT07V+/fpCYypUqKAZM2ZQnAbA45jiEwBQrnl5eWnSpEnasWOHBg0apIoVKxYa37RpU40bN07PP/98KWVor2XLlrr22mvzPD58+HAPZAMAAACguMrCvchdd92lNWvWqEuXLgXG3HDDDVq2bJndtKVF1b17d8XFxemNN95QREREobHBwcEaMmSIfvzxx2LvDwAAACjvSuu7fHk3ZswY/fTTT2rbtm2BMY0aNdI777yjNWvWKCQkxKl269atq19++UWPP/64mjdvbjeKXH4qVqyoIUOG6M8//9Szzz6bb0yXLl303Xff6e9//3ue0dnyU7VqVT388MPas2ePhgwZ4lTeAOBOTPEJALiqZGdn6/fff9ehQ4eUmJioCxcuKCgoSPXr11fbtm1Vp04dT6cIAAAAoBy60u9FDhw4oN9++00nT56UxWJRnTp1dO2116pRo0Yu39eePXu0bds2JSYm6uzZs6pQoYLCwsLUokULtW7dWt7e3i7fJwAAAFBeleZ3+fIsNjZWGzZsUGJionx9fRUeHq4mTZrkO6hAUSUnJys2NlYHDhzQ6dOnlZ6ergoVKqhatWpq3ry52rZtq8DAwCK1mZCQoF27dungwYNKTk5WVlaWKlSooOrVq6tVq1Zq3bq1fH19S5w7ALgKBWoAAAAAAAAAAAAAAAAAALdgik8AAAAAAAAAAAAAAAAAgFtQoAYAAAAAAAAAAAAAAAAAcAsK1AAAAAAAAAAAAAAAAAAAbkGBGgAAAAAAAAAAAAAAAADALXw8nQAAAFeqtLQ0nT592qVtVq9eXZUqVXJpmwAAAADKF+5FAAAAAJSWQ4cOubS9gIAAhYWFubRNAEDZZzEMw/B0EgAAXIlmzZql+++/36VtfvbZZxoxYoRL2wQAwJMSExO1dOlSbd26VUlJSfLx8VFYWJi6dOmi3r17y9/f39MpAkCZw70IAAClh3saAFc7i8Xi0va6d++uVatWubRNAEDZxwhqAAAAAIBi2bx5s6ZNm6aMjAzzsaysLMXFxSkuLk7Lly/Xiy++yF/NAgAAALgicU8DAAAAlA4K1AAAAAAARXbw4EFNnTpV2dnZCggI0IABA9SqVStlZ2frt99+0/LlyxUfH6+3335bEydOVGBgoKdTBgAAAAAT9zQAAABA6WGKTwAAAABAkY0bN067d++Wt7e3JkyYoCZNmtg9/8MPP2jevHmSpIEDByo6OtoTaQIAAABAvrinAQAAAEqPl6cTAAAAAACULfv379fu3bslST169MjzQ44k9evXT7Vr15YkLV26VDk5OaWaIwAAAAAUhHsaAAAAoHRRoAYAAAAAKJKNGzeayz169Mg3xsvLS927d5cknT9/XrGxsaWSGwAAAAA4wj0NAAAAULooUAMAAAAAFMlff/0lSfL391eDBg0KjGvRokWebQAAAADA07inAQAAAEqXj6cTAAAAAACULceOHZMkhYWFydvbu8C4WrVq5dnGWUlJSU7FhYSEFKldAAAAAHD3PQ33MwAAAIA9CtQAAAAAAE7Lzs5WamqqJMc/plSqVEn+/v7Kyspy+geaS0aNGuUwZs6cOUVqEwAAAABK456G+xkAAADAHlN8AgAAAACclpmZaS4HBAQ4jL8UY7udq/j6+rq8TQAAAADl25VyT8P9DAAAAK4mjKAGGYah3NxcT6dRLlwaCtxqtXo4E6Bw9FWUFfRVlBX0Vffw8vKSxWLxdBq4THZ2trns4+P4lvJSjO12zoiJiXEY4+V18W+uysI9jXHmtKdTKJcsVat7OoVyh77qHvRV16Ovugd91fXoq+5RFvoq9zNXrtK4pylv9zMS72fuUBbey8oi+qrr0Vfdg77qevRV96Cvul5Z6auuvqehQA3Kzc3VyZMnPZ1Gmefl5aWwsDBJUmJiYpm4ocTVib6KsoK+irKCvuo+NWvWNIv/cOXw8/Mzl3NychzGX4qx3c4ZjqbasVUW7mmsD97u6RTKJe9PfvB0CuUOfdU96KuuR191D/qq69FX3aMs9FXuZ65cpXFPU97uZyTez9yhLLyXlUX0Vdejr7oHfdX16KvuQV91vbLSV119T8MUnwAAAAAAp9lOgePMFDeXYpyZOgcAAAAA3I17GgAAAKD0UaAGAAAAAHCan5+fKleuLElKSkoqNDYtLU1ZWVmSijaCAAAAAAC4C/c0AAAAQOmjQA0AAAAAUCR16tSRJCUkJMhqtRYYd+LEiTzbAAAAAICncU8DAAAAlC4K1AAAAAAARdK0aVNJUlZWlg4cOFBg3K5du/JsAwAAAACexj0NAAAAULooUAMAAAAAFEnHjh3N5ZUrV+Ybk5ubq9WrV0uSKlasqJYtW5ZKbgAAAADgCPc0AAAAQOmiQA0AAAAAUCSNGjVS8+bNJV38MWfv3r15YhYvXqzjx49Lkvr27SsfH59SzREAAAAACsI9DQAAAFC6KFADAAAAABTZiBEj5OfnJ6vVqjfeeEOLFi3S3r17tXPnTs2YMUPz5s2TJIWHh6t///4ezhYAAAAA7HFPAwAAAJQe/twDAAAAAFBk9evX15gxYzRt2jRlZGRo/vz5eWLCw8P14osvKjAw0AMZAgAAAEDBuKcBAAAASg8FagAAAACAYunQoYPee+89LVmyRFu3blVycrJ8fHwUFhamzp07q0+fPvL39/d0mgAAAACQL+5pAAAAgNJBgRoAAAAAoNhCQ0M1fPhwDR8+3NOpAAAAAECRcU8DAAAAuJ+XpxMAAAAAAAAAAAAAAAAAAJRPFKgBAAAAAAAAAAAAAAAAANyCAjUAAAAAAAAAAAAAAAAAgFtQoAYAAAAAAAAAAAAAAAAAcAsK1AAAAAAAAAAAAAAAAAAAbkGBGgAAAAAAAAAAAAAAAADALShQAwAAAAAAAAAAAAAAAAC4BQVqAAAAAAAAAAAAAAAAAAC3oEANAAAAAAAAAAAAAAAAAOAWFKgBAAAAAAAAAAAAAAAAANyCAjUAAAAAAAAAAAAAAAAAgFtQoAYAAAAAAAAAAAAAAAAAcAsK1AAAAAAAAAAAAAAAAAAAbkGBGgAAAAAAAAAAAAAAAADALShQAwAAAAAAAAAAAAAAAAC4BQVqAAAAAAAAAAAAAAAAAAC3oEANAAAAAAAAAAAAAAAAAOAWPp5O4EqVmJiopUuXauvWrUpKSpKPj4/CwsLUpUsX9e7dW/7+/sVq99SpU3r88ceLtE1oaKg++OCDYu0PAAAAAAAAAAAAAAAAADyFArV8bN68WdOmTVNGRob5WFZWluLi4hQXF6fly5frxRdfVFhYWKnkU6tWrVLZDwAAAAAAAAAAAAAAAAC4EgVqlzl48KCmTp2q7OxsBQQEaMCAAWrVqpWys7P122+/afny5YqPj9fbb7+tiRMnKjAwsEjtV6tWTe+9957DuO+++05r166VJHXv3r1YxwIAAAAAAAAAAAAAAAAAnkSB2mVmzZql7OxseXt76+WXX1aTJk3M51q1aqXw8HDNmzdP8fHx+vHHHxUdHV2k9n18fFSvXr1CY3JzcxUbGytJCgwMVMeOHYt+IAAAAAAAAAAAAAAAAADgYV6eTuBKsn//fu3evVuS1KNHD7vitEv69eun2rVrS5KWLl2qnJwcl+exfft2nTlzRpLUqVMn+fn5uXwfAAAAAAAAAAAAAAAAAOBuFKjZ2Lhxo7nco0ePfGO8vLzMKTfPnz9vjnTmSmvWrDGXo6KiXN4+AAAAAAAAAAAAAAAAAJQGCtRs/PXXX5Ikf39/NWjQoMC4Fi1a5NnGVTIyMrRp0yZJUmhoqJo3b+7S9gEAAAAAAAAAAAAAAACgtPh4OoErybFjxyRJYWFh8vb2LjCuVq1aebZxlfXr1ysrK0uSdOONN8pisRSrnaSkJIcxwcHB5nF6eV35tYoX/t7P0ykUyirpqKeTKCLffy/2dArwANvrvSxc+7h60VdRVtBXAQAAAAAAAAAAgIJRoPY/2dnZSk1NlSSFhIQUGlupUiX5+/srKyvLqUKworCd3vPSVKLFMWrUKIcxMTExCgkJkbe3t8LCwoq9r9JS1oq/yoKy8LrDvWrUqOHpFACn0FdRVtBXAQAAAAAAAAAAAHsM8fA/mZmZ5nJAQIDD+EsxttuV1OnTp7Vr1y5JUtOmTSkeAgAAAAAAAAAAAAAAAFCmMYLa/2RnZ5vLPj6OT8ulGNvtSmrNmjUyDEPSxek9SyImJsZhTHBwsCTJarUqMTGxRPtD2ZSQkODpFOABXl5e5gg/p06dUm5uroczAvJHX0VZQV91n9DQUHNKegAAAAAAAAAAAJRNFKj9j5+fn7mck5PjMP5SjO12JfXrr79Kknx9fdW1a9cSteVomtLL8UPq1YnXHbm5ufQDlAn0VZQV9FUAAAAAAAAAAADAHgVq/2M7racz03ZeinFmOlBn7N+/X8ePH5ckXXvttapYsaJL2gUAAAAAeJ73Jz94OgWHvLy8FBYWJuniaMsU3AIAAAAAAAAAXMHL0wlcKfz8/FS5cmVJUlJSUqGxaWlpysrKklT0kcoKsnr1anO5e/fuLmkTAAAAAAAAAAAAAAAAADyJAjUbderUkXTxL8WtVmuBcSdOnMizTUnk5OTo999/lyRVqVJF7dq1K3GbAAAAAAAAAAAAAAAAAOBpFKjZaNq0qSQpKytLBw4cKDBu165debYpia1btyo1NVWSdP3118vb27vEbQIAAAAAAAAAAAAAAACAp1GgZqNjx47m8sqVK/ONyc3NNafjrFixolq2bFni/a5Zs8ZcjoqKKnF7AAAAAAAAAAAAAAAAAHAloEDNRqNGjdS8eXNJFwvU9u7dmydm8eLFOn78uCSpb9++8vHxsXs+NjZW0dHRio6O1gcffOBwn2lpadq6daskqV69eoqMjCzhUQAAAAAAAAAAAAAAAADAlYECtcuMGDFCfn5+slqteuONN7Ro0SLt3btXO3fu1IwZMzRv3jxJUnh4uPr371/i/f3222/KycmRJHXv3r3E7QEAAAAAAAAAAAAAAADAlcLHccjVpX79+hozZoymTZumjIwMzZ8/P09MeHi4XnzxRQUGBpZ4f5em9/Ty8tINN9xQ4vYAAAAAAAAAAAAAAAAA4EpBgVo+OnTooPfee09LlizR1q1blZycLB8fH4WFhalz587q06eP/P39S7yf+Ph47du3T5LUpk0bBQcHl7hNAAAAAAAAAAAAAAAAALhSUKBWgNDQUA0fPlzDhw8v0nYtW7bUwoULnYoNDw93OhYAAAAAAAAAAAAAAAAAyhovTycAAAAAAAAAAAAAAAAAACifKFADAAAAAAAAAAAAAAAAALgFBWoAAAAAAAAAAAAAAAAAALegQA0AAAAAAAAAAAAAAAAA4BYUqAEAAAAAAAAAAAAAAAAA3IICNQAAAAAAAAAAAAAAAACAW1CgBgAAAAAAAAAAAAAAAABwCwrUAAAAAAAAAAAAAAAAAABuQYEaAAAAAAAAAAAAAAAAAMAtKFADAAAAAAAAAAAAAAAAALgFBWoAAAAAAAAAAAAAAAAAALegQA0AAAAAAAAAAAAAAAAA4BYUqAEAAAAAAAAAAAAAAAAA3IICNQAAAAAAAAAAAAAAAACAW1CgBgAAAAAAAAAAAAAAAABwCwrUAAAAAAAAAAAAAAAAAABuQYEaAAAAAAAAAAAAAAAAAMAtKFADAAAAAAAAAAAAAAAAALgFBWoAAAAAAAAAAAAAAAAAALegQA0AAAAAAAAAAAAAAAAA4BYUqAEAAAAAAAAAAAAAAAAA3IICNQAAAAAAAAAAAAAAAACAW1CgBgAAAAAAAAAAAAAAAABwCwrUAAAAAAAAAAAAAAAAAABuQYEaAAAAAAAAAAAAAAAAAMAtKFADAAAAAAAAAAAAAAAAALgFBWoAAAAAAAAAAAAAAAAAALegQA0AAAAAAAAAAAAAAAAA4BYUqAEAAAAAAAAAAAAAAAAA3IICNQAAAAAAAAAAAAAAAACAW1CgBgAAAAAAAAAAAAAAAABwCwrUAAAAAAAAAAAAAAAAAABuQYEaAAAAAAAAAAAAAAAAAMAtfDydAAAAAAAAAAAAAFBaTp06pS1btig2NlZHjhxRcnKyDMNQ5cqV1aBBA11//fXq3LmzvL29PZ0qAAAAUC5QoAYAAAAAAAAAAICrwoIFC7Ro0SIZhpHnueTkZCUnJ2vz5s1avHixnnnmGVWvXt0DWQIAAADlCwVqAAAAAAAAAAAAuCqkpKTIMAz5+/urY8eOat26tcLCwuTn56djx45p6dKliouLU1xcnF5//XVNmjRJAQEBnk4bAAAAKNMoUAMAAAAAAAAAAMBVoVKlShoyZIh69eqlwMBAu+caNGigbt266Z///KfWrVun+Ph4LV68WAMHDvRQtgAAAED54OXpBAAAAAAAAAAAAIDSMHToUN1xxx15itMu8fLy0siRI+Xjc3GMh/Xr15dmegAAAEC5RIEaAAAAAAAAAAAA8D+VK1dWRESEJOnkyZMezgYAAAAo+yhQAwAAAAAAAAAAAGxcuHBB0sUR1QAAAACUjI+nEwAAAAAAAAAAAACuFGfPntXx48clSbVr1y7y9klJSQ5jgoOD5e3tLalsFMFZPZ1AOVQWXveyiL7qevRV96Cvuh591T3oq653tfZVCtQAAAAAAEWSmZmpAwcOaP/+/dq/f7/i4uKUmJgoSQoNDdUHH3zg4QwBAAAAoPh++OEHWa0Xf47t0qVLkbcfNWqUw5iYmBiFhITI29tbYWFhRd5HaTvq6QTKobLwupdF9FXXo6+6B33V9eir7kFfdb2rta9SoAYAAAAAKJJJkyYpNjbW02kAAAAAgMvt27dPS5YskSSFhISoV69eHs4IAAAAKPsoUAMAAAAAFIlhGOZypUqV1LBhQ/3111/KzMz0YFYAAAAAUDIpKSmaPHmyrFarLBaLHnvsMfn7+xe5nZiYGIcxwcHBkiSr1WqOSI2rS0JCgqdTAJxCX0VZQV9FWVFW+mpoaKg5Jb0rUKAGAAAAACiSbt26qWfPnmrUqJE5HPljjz1GgRoAAAAAl4mOji5xG48++qiioqKcis3IyNDEiROVlJQkSbr33nvVqlWrYu03JCSkSPG5ubnF2g/KNl53lBX0VZQV9FWUFVdrX6VADQAAAABQJD179vR0CgAAAADgMtnZ2XrnnXd04MABSVL//v11xx13eDgrAAAAoPygQA0AAAAAAAAAAABXlClTppS4japVqzqMsVqtmjJlimJjYyVJN910k4YNG1bifQMAAAD4fxSoAQAAAAAAAAAA4IpSu3Ztt+8jNzdX06ZN05YtWyRJXbt21UMPPeT2/QIAAABXGwrUAAAAAABXnKSkJIcxwcHB8vb2liR5eXm5O6Vyz/Yccj6vXlZPJ1BOcU25Hn3VPeirrkdfdQ/6KlxlxowZ+v333yVJ1157rUaPHk3/AgAAANyAAjUAAAAAwBVn1KhRDmNiYmIUEhIib29vhYWFlUJWV48aNWp4OgV4yFFPJ1BO8R7levRV96Cvuh591T3oq3CF2bNna8WKFZKk1q1b6+mnnzb/AAYAAACAa/FnIAAAAAAAAAAAALhqLFy4UP/5z38kSU2bNtWzzz4rX19fD2cFAAAAlF+MoAYAAAAAuOLExMQ4jAkODpYkWa1WJSYmujmj8s/Ly8scOe3UqVPKzc31cEZA+ZGQkODpFACn0FdRVpSFvhoaGspoXFeopUuX6uuvv5YkVatWTUOGDNGpU6cK3aZWrVry8eEnNQAAAKC4+DYNAAAAAOVQdHR0idt49NFHFRUVVfJkiiEkJKRI8RRTuVZubi7nFHAhrieUFfRVlBX0VZTEhg0bzOXk5GS9+uqrDreZPn26+cccAAAAAIqOKT4BAAAAAAAAAAAAAAAAAG7BCGoAAAAAUA5NmTKlxG1UrVrVBZkAAAAAwJVj/Pjxnk4BAAAAuOpQoAYAAAAA5VDt2rU9nQIAAAAAAAAAAABTfAIAAAAAAAAAAAAAAAAA3IMCNQAAAAAAAAAAAAAAAACAW1CgBgAAAAAAAAAAAAAAAABwCx9PJwAAAAAAKFsSEhK0Z88eu8cyMzPN/65atcruuXbt2ik4OLiUsgMAAAAAAAAAAFcSCtQAAAAAAEWyZ88effjhh/k+l5qamue5cePGUaAGAAAAAAAAAMBViik+AQAAAAAAAAAAAAAAAABuwQhqAAAAAIAiiYqKUlRUlKfTAAAAAAAAAAAAZQAjqAEAAAAAAAAAAAAAAAAA3IICNQAAAAAAAAAAAAAAAACAW1CgBgAAAAAAAAAAAAAAAABwCwrUAAAAAAAAAAAAAAAAAABuQYEaAAAAAAAAAAAAAAAAAMAtKFADAAAAAAAAAAAAAAAAALgFBWoAAAAAAAAAAAAAAAAAALegQA0AAAAAAAAAAAAAAAAA4BYUqAEAAAAAAAAAAAAAAAAA3IICNQAAAAAAAAAAAAAAAACAW1CgBgAAAAAAAAAAAAAAAABwCwrUAAAAAAAAAAAAAAAAAABuQYEaAAAAAAAAAAAAAAAAAMAtKFADAAAAAAAAAAAAAAAAALgFBWoAAAAAAAAAAAAAAAAAALegQA0AAAAAAAAAAAAAAAAA4BYUqAEAAAAAAAAAAAAAAAAA3IICNQAAAAAAAAAAAAAAAACAW1CgBgAAAAAAAAAAAAAAAABwCx9PJ3ClSkxM1NKlS7V161YlJSXJx8dHYWFh6tKli3r37i1/f3+X7Wv79u369ddftWfPHqWkpMjLy0vBwcGqV6+eWrdurRtvvFEBAQEu2x8AAAAAAAAAAAAAAAAAlAYK1PKxefNmTZs2TRkZGeZjWVlZiouLU1xcnJYvX64XX3xRYWFhJdpPWlqaPvzwQ23evDnPcxkZGYqPj9eGDRvUpEkTRUZGlmhfAAAAAAAAAAAAAAAAAFDaKFC7zMGDBzV16lRlZ2crICBAAwYMUKtWrZSdna3ffvtNy5cvV3x8vN5++21NnDhRgYGBxdpPenq63njjDR04cECS1LFjR3Xu3Fk1a9aUl5eXkpKStGvXLm3YsMGVhwcAAAAAAAAAAAAUifcnP3g6BYe8vLzMwSUSEhKUm5vr4YwAAABwCQVql5k1a5ays7Pl7e2tl19+WU2aNDGfa9WqlcLDwzVv3jzFx8frxx9/VHR0dLH2M3PmTB04cEC+vr566qmn1KFDB7vnGzZsqI4dO2r48OF8gQYAAAAAAAAAAAAAAABQJnl5OoEryf79+7V7925JUo8ePeyK0y7p16+fateuLUlaunSpcnJyiryfPXv2aM2aNZKkQYMG5SlOs2WxWOTt7V3kfQAAAAAAAAAAAAAAAACAp1GgZmPjxo3mco8ePfKN8fLyUvfu3SVJ58+fV2xsbJH389NPP0mSKlSooD59+hQjUwAAAAAAAAAAAAAAAAC48lGgZuOvv/6SJPn7+6tBgwYFxrVo0SLPNs7KycnRpk2bJElt2rSRn5+fJCk3N1enT5/WqVOnlJ2dXdTUAQAAAAAAAAAAAAAAAOCK4+PpBK4kx44dkySFhYUVOq1mrVq18mzjrEOHDunChQuSpHr16ik9PV0LFy7U6tWrdf78eUmSj4+Pmjdvrr/97W9q2bJlUQ8DAAAAAAAAAAAAAAAAAK4IFKj9T3Z2tlJTUyVJISEhhcZWqlRJ/v7+ysrKUlJSUpH2Y1vQlpubqxdffFHx8fF2MTk5OdqxY4d27type+65RwMGDCjSPiQ5lVdwcLBZiOfldeUPpmf1dALlUFl43eF6tq87fQBXMvoqygr6KgAAAAAAAAAAAFAwCtT+JzMz01wOCAhwGB8QEKCsrCy77ZyRlpZmLn///fe6cOGC2rVrp+joaEVERCgjI0Pr16/XF198ofT0dH3xxReqXbu2rrvuuiLtZ9SoUQ5jYmJiFBISIm9vb4WFhRWpfU846ukEyqGy8LrDvWrUqOHpFACn0FdRVtBXAQAAAAAAAAAAAHsM8fA/2dnZ5rKPj+O6vUsxtts5Iysry1y+cOGC2rRpoxdeeEGNGjWSr6+vgoKC1KtXL73wwguyWCySpC+++EKGYRRpPwAAAAAAAAAAAAAAAADgaYyg9j9+fn7mck5OjsP4SzG22znD19fXbn3IkCH5TgXVrFkzderUSevXr9fx48d15MgRRUREOL2fmJgYhzHBwcGSJKvVqsTERKfbRvmRkJDg6RTgAV5eXuYIP6dOnVJubq6HMwLyR19FWUFfdZ/Q0FBzSnoAAAAAAAAAAACUTRSo/Y/ttJ7OTNt5KcaZ6UBtBQYGmstBQUGqX79+gbFt27bV+vXrJUlxcXFFKlALCQkpUl78kHp14nVHbm4u/QBlAn0VZQV9FQAAAAAAAAAAALDHFJ//4+fnp8qVK0uSkpKSCo1NS0szp+osaiGYbbyjbW2fP3fuXJH2AwAAAAAAAAAAAAAAAACeRoGajTp16ki6OO2h1WotMO7EiRN5tnFW3bp1zWVHo2vYPp/fNKAAAAAAAAAAAAAAAAAAcCWj6slG06ZNJUlZWVk6cOBAgXG7du3Ks42zQkNDVb16dUnSqVOnZBhGgbEnT540l6tVq1ak/QAAAAAAAAAAAAAAAACAp1GgZqNjx47m8sqVK/ONyc3N1erVqyVJFStWVMuWLYu8n06dOkmSMjIytGPHjgLjNm7caC43a9asyPsBAAAAAAAAAAAAAAAAAE+iQM1Go0aN1Lx5c0kXC9T27t2bJ2bx4sU6fvy4JKlv377y8fGxez42NlbR0dGKjo7WBx98kO9+brvtNvn6+kqS5syZo/T09Dwxa9asUWxsrCSpffv25qhrAAAAAAAAAAAAAAAAAFBWUKB2mREjRsjPz09Wq1VvvPGGFi1apL1792rnzp2aMWOG5s2bJ0kKDw9X//79i7WP6tWra9CgQZKkI0eO6KWXXtLKlSt14MAB7dy5UzNnztSHH34oSQoMDNTw4cNdc3AAAAAAAAAAAAAAAAAAUIp8HIdcXerXr68xY8Zo2rRpysjI0Pz58/PEhIeH68UXX1RgYGCx93P77bcrLS1N33//vU6cOKGYmJg8MVWqVNGzzz6r8PDwYu8HAAAAAAAAAAAAAAAAADyFArV8dOjQQe+9956WLFmirVu3Kjk5WT4+PgoLC1Pnzp3Vp08f+fv7l3g/9957rzp06KBffvlFu3fvVkpKinx9fRUeHq4OHTqob9++qlChgguOCAAAAAAAAAAAAAAAAABKHwVqBQgNDdXw4cOLPL1my5YttXDhQqfjmzRpoiZNmhQ1PQAAAAAAAAAAAAAAAAC44nl5OgEAAAAAAAAAAAAAAAAAQPlEgRoAAAAAAAAAAAAAAAAAwC0oUAMAAAAAAAAAAAAAAAAAuAUFagAAAAAAAAAAAAAAAAAAt6BADQAAAAAAAAAAAAAAAADgFhSoAQAAAAAAAAAAAAAAAADcggI1AAAAAAAAAAAAAAAAAIBbUKAGAAAAAAAAAAAAAAAAAHALCtQAAAAAAAAAAAAAAAAAAG5BgRoAAAAAAAAAAAAAAAAAwC0oUAMAAAAAAAAAAAAAAAAAuAUFagAAAAAAAAAAAAAAAAAAt6BADQAAAAAAAAAAAAAAAADgFhSoAQAAAAAAAAAAAAAAAADcggI1AAAAAAAAAAAAAAAAAIBbUKAGAAAAAAAAAAAAAAAAAHALCtQAAAAAAAAAAAAAAAAAAG5BgRoAAAAAAAAAAAAAAAAAwC0oUAMAAAAAAAAAAAAAAAAAuAUFagAAAAAAAAAAAAAAAAAAt6BADQAAAAAAAAAAAAAAAADgFhSoAQAAAAAAAAAAAAAAAADcggI1AAAAAAAAAAAAAAAAAIBb+Hg6AQAAAAAAAAAAAMDT/vjjD7399tvm+sCBAxUdHe3BjAAAAIDygRHUAAAAAAAAAAAAcFXLzMzUp59+6uk0AAAAgHKJAjUAAAAAAAAAAABc1b788kslJiaqSpUqnk4FAAAAKHcoUAMAAAAAAAAAAMBV68CBA1q6dKl8fX01ePBgT6cDAAAAlDsUqAEAAAAAAAAAAOCqlJubq48//li5ubm68847FRYW5umUAAAAgHKHAjUAAAAAAAAAAABclRYvXqyDBw8qPDxcd9xxh6fTAQAAAMolCtQAAAAAAAAAAABw1Tl16pS++uorSdKDDz4oX19fD2cEAAAAlE8+nk4AAAAAAAAAAAAAKG2ffvqpsrKy1K1bN7Vq1cpl7SYlJTmMCQ4Olre3tyTJy4vxJFzB9jxyTq9eVk8nUA5xPbkHfdX16KvuQV91vau1r1KgBgAAAAAAAAAAgKvK2rVrtW3bNlWsWFHDhw93adujRo1yGBMTE6OQkBB5e3srLCzMpfuHVKNGDU+nAA856ukEyiHeo9yDvup69FX3oK+63tXaV6/OsjwAAAAAAAAAAABcldLS0jR79mxJ0j333KMqVap4OCMAAACgfGMENQAAAAAAAAAAAFw15syZo7Nnz6px48bq2bOny9uPiYlxGBMcHCxJslqtSkxMdHkOVyMvLy9z5LRTp04pNzfXwxkB5UNCQoKnUwCcQl9FWVFW+mpoaKg5Jb0rUKAGAAAAAAAAAACAK0p0dHSJ23j00UcVFRVl91hsbKxWrVolLy8vPfjgg/Lycv1kQyEhIUWKp5DK9XJzczmvgItwLaGsoK+irLha+ypTfAIAAAAAAAAAAKDcu3DhgmbMmCFJ6tu3ryIjIz2bEAAAAHCVYAQ1AAAAAAAAAAAAXFGmTJlS4jaqVq1qt75hwwbFx8fL29tbderU0W+//ZZnm2PHjpnLR48eNWMaN25sTh8JAAAAoGgoUAMAAAAAAAAAAMAVpXbt2i5vMycnR5JktVr18ccfO4zfsGGDNmzYIOnidKEUqAEAAADFQ4EaAAAAAKBITp06pS1btig2NlZHjhxRcnKyDMNQ5cqV1aBBA11//fXq3LmzvL29PZ0qAAAAAAAAAADwMArUAAAAAABOW7BggRYtWiTDMPI8l5ycrOTkZG3evFmLFy/WM888o+rVq3sgSwAAAADIKyoqSlFRUYXGxMbGasKECZKkgQMHKjo6uhQyAwAAAMo3CtQAAAAAAE5LSUmRYRjy9/dXx44d1bp1a4WFhcnPz0/Hjh3T0qVLFRcXp7i4OL3++uuaNGmSAgICPJ02AAAAAAAAAADwEArUAAAAAABOq1SpkoYMGaJevXopMDDQ7rkGDRqoW7du+uc//6l169YpPj5eixcv1sCBAz2ULQAAAAAAAAAA8DQvTycAAAAAACg7hg4dqjvuuCNPcdolXl5eGjlypHx8Lv491Pr160szPQAAAAAAAAAAcIWhQA0AAAAA4FKVK1dWRESEJOnkyZMezgYAAAAAAAAAAHgSU3wCAAAAAFzuwoULki6OqAYAAAAAZUXLli21cOFCT6cBAAAAlCsUqAEAAAAAXOrs2bM6fvy4JKl27drFaiMpKclhTHBwsLy9vSVRCOcKtueQ83n1sno6gXKKa8r16KvuQV91Pfqqe9BXAQAAAKBsoUANAAAAAOBSP/zwg6zWiz/HdunSpVhtjBo1ymFMTEyMQkJC5O3trbCwsGLtB/mrUaOGp1OAhxz1dALlFO9RrkdfdQ/6quvRV92DvgoAAAAAZQt/ZgQAAAAAcJl9+/ZpyZIlkqSQkBD16tXLwxkBAAAAAAAAAABPYgQ1AAAAAIBLpKSkaPLkybJarbJYLHrsscfk7+9frLZiYmIcxgQHB0uSrFarEhMTi7Uf/D8vLy9z5LRTp04pNzfXwxkB5UdCQoKnUwCcQl9FWVEW+mpoaKg5HT0AAAAAXO0oUAMAAACAcig6OrrEbTz66KOKiopyKjYjI0MTJ05UUlKSJOnee+9Vq1atir3vkJCQIsVTTOVaubm5nFPAhbieUFbQV1FW0FcBAAAAoGxhik8AAAAAQIlkZ2frnXfe0YEDByRJ/fv31x133OHhrAAAAAAAAAAAwJWAEdQAAAAAoByaMmVKiduoWrWqwxir1aopU6YoNjZWknTTTTdp2LBhJd43AAAAAAAAAAAoHyhQAwAAAIByqHbt2m7fR25urqZNm6YtW7ZIkrp27aqHHnrI7fsFAAAAAAAAAABlB1N8AgAAAACKZcaMGfr9998lSddee61Gjx4tLy9uMwEAAAAAAAAAwP/jlwMAAAAAQJHNnj1bK1askCS1bt1aTz/9tLy9vT2cFQAAAAAAAAAAuNJQoAYAAAAAKJKFCxfqP//5jySpadOmevbZZ+Xr6+vhrAAAAAAAAAAAwJXIx9MJAAAAAADKjqVLl+rrr7+WJFWrVk1DhgzRqVOnCt2mVq1a8vHh9hMAAAAAAAAAgKsRvxAAAAAAAJy2YcMGczk5OVmvvvqqw22mT5+uGjVquDMtAAAAAAAAAABwhWKKTwAAAAAAAAAAAAAAAACAWzCCGgAAAADAaePHj/d0CgAAAAAAAAAAoAxhBDUAAAAAAAAAAAAAAAAAgFtQoAYAAAAAwP+xd+fxVdd3vvhfJIGEPRLBoCiKIgootUWrlQKurR2ttrVcZ3rn2t7+fEzBztzOTDe73E6nznTRudpxLFO1rXbT2s60WpfaSsUpbqhULaAgCCpLTGSRNQlJ+P3hJRdkDeScQ+D5/Kff8/1+lvc5+SRq88rnAwAAAAAAFISAGgAAAAAAAAAAAAUhoAYAAAAAAAAAAEBBCKgBAAAAAAAAAABQEAJqAAAAAAAAAAAAFISAGgAAAAAAAAAAAAUhoAYAAAAAAAAAAEBBCKgBAAAAAAAAAABQEAJqAAAAAAAAAAAAFISAGgAAAAAAAAAAAAUhoAYAAAAAAAAAAEBBCKgBAAAAAAAAAABQEAJqAAAAAAAAAAAAFISAGgAAAAAAAAAAAAUhoAYAAAAAAAAAAEBBCKgBAAAAAAAAAABQEAJqAAAAAAAAAAAAFISAGgAAAAAAAAAAAAUhoAYAAAAAAAAAAEBBCKgBAAAAAAAAAABQEAJqAAAAAAAAAAAAFISAGgAAAAAAAAAAAAVRUeoC9lcNDQ25//77M2vWrKxYsSIVFRWpra3NGWeckfe85z2prKzc67GnT5+e73znO3vUdsqUKZk4ceJezwUAAAAAAAAAAFAqAmo78NRTT+WGG27Ixo0b2+81NTVl4cKFWbhwYaZNm5arrroqtbW1JawSAAAAAAAAAABg/yag9haLFi3K9ddfn+bm5lRVVeWSSy7J6NGj09zcnEceeSTTpk3L8uXL8/Wvfz3f+MY30rNnz32a74tf/GIOOeSQnT6vqanZp/EBAAAAAAAAAABKRUDtLW699dY0NzenvLw8X/rSl3L88ce3Pxs9enQGDx6cH//4x1m+fHl+/etfZ9KkSfs03+DBgzNo0KB9LRsAAAAAAAAAAGC/U1bqAvYnCxYsyPPPP58kOeuss7YJp21x4YUX5ogjjkiS3H///WlpaSlqjQAAAAAAAAAAAF2FgNpWZs6c2X591lln7bBNWVlZJkyYkCRZv3595syZU5TaAAAAAAAAAAAAuhoBta3MmzcvSVJZWZlhw4bttN3IkSO36wMAAAAAAAAAAMC2KkpdwP5kyZIlSZLa2tqUl5fvtN3hhx++XZ+9NXXq1Cxbtixr1qxJr169Ultbm5NOOinnn39+BgwYsNfjrlixYrdtqqur299nWdn+n1VsLXUBB6Cu8HWn8239dbcG2J9Zq3QV1ioAAAAAAADsXMkDaq+88kpWrFiR9evXp7W1tf34zGJrbm7O2rVrkyQ1NTW7bNunT59UVlamqalpj4Jgu7L1EaFr167N2rVr8+KLL+bXv/51PvrRj+a8887bq3EnT5682zZTp05NTU1NysvLU1tbu1fzFNOrpS7gANQVvu4U1qBBg0pdAuwRa5WuwloFAAAAAACAbZUkoNbQ0JC77rorjzzySDZs2LDNs7cG1FavXp0f/OAH2bx5c4499thcfPHFBampsbGx/bqqqmq37auqqtLU1LRNv4447LDDctppp+X4449vD8TV19fn8ccfzxNPPJFNmzbl5ptvTrdu3XLuuefu1RwAAAAAAAAAAAClVPSA2owZM3LzzTfvcbCruro6a9asydy5c/PHP/4x73nPe/YoQNZRzc3N7dcVFbv/WLa02brfnjrttNMyYcKEdOvWbZv7xx13XN71rnfl6aefzrXXXpvW1tbcdtttGTt2bKqrqzs0x9SpU3fbZsuYra2taWho6ND4HBjq6upKXQIlUFZW1r7DT319fdra2kpcEeyYtUpXYa0WzsCBA9uPpAcAAAAAAKBrKmpA7fHHH88NN9zQ/rpXr145/vjj89prr2X58uU77Xf22Wdn7ty5aW5uzjPPPJPTTz+902vr0aNH+3VLS8tu229ps3W/PdWrV69dPn/HO96RSy+9ND/72c/S1NSU3//+9/ngBz/YoTl2d0zpW/lF6sHJ1522tjbrgC7BWqWrsFYBAAAAAABgW2XFmmj9+vX57ne/myTp1q1bLr300tx000256qqrcvLJJ++y79ixY1NW9mapf/rTnwpS39a7su3J7m5b2hRiN7ckOffcc9t3WJs7d25B5gAAAAAAAAAAACikogXUHnzwwWzYsCFJcumll+bDH/5wunfvvkd9e/bsmSFDhiRJXn755YLU16NHj/Tt2zdJsmLFil22XbduXZqampJ0fKeyPdW/f//06dMnSbJy5cqCzAEAAAAAAAAAAFBIRQuo/fGPf0yS9O3bN5dcckmH+w8ePDhJ8tprr3VmWdvYEoKrq6tLa2vrTtstW7Zsuz6FsGUHNQAAAAAAAAAAgK6oaAG1LaGuE044IRUVFR3uv2U3sS27sBXCiBEjkiRNTU156aWXdtpu6yM3t/TpbGvWrMnatWuTJIccckhB5gAAAAAAAAAAACikogXU1q1bl+TNoyv3RltbW5KkrKxwJZ922mnt1w899NBO63j44YeTJL17986oUaMKUsuDDz6YzZs3J0lGjhxZkDkAAAAAAAAAAAAKqWgBtV69eiVJGhsb96r/ypUrk/y/ndQK4bjjjsuJJ56Y5M2A2vz587drc88992Tp0qVJkgsuuGC73eDmzJmTSZMmZdKkSbnxxhu3619fX59Fixbtso6nn346v/jFL5IkPXr0yFlnnbVX7wcAAAAAAAAAAKCUOn7W5l4aMGBA1q5dm5dffrnDfVtaWtrDYocffnhnl7aNj370o/nyl7+c5ubmXH311fnABz6QUaNGpbm5OY8++mgefPDBJMngwYNz0UUXdXj8hoaGfPWrX83xxx+fd7zjHRk6dGj7rnKvvfZaHn/88TzxxBPtu6f95V/+ZQYMGNB5bxAAAAAAAAAAAKBIihZQGzVqVF5++eW8+uqrefnllzN06NA97jt9+vRs3LixfZxCOuaYY/KpT30qN9xwQzZu3Jjbb799uzaDBw/OVVddlZ49e+71PPPnz9/hDm1bVFZW5vLLL8+5556713MAAAAAAAAAAACUUtECauPGjct9992XJLn55pvzla98Jd27d99tv1deeSU//vGPkyTl5eUZP358QetMkrFjx+baa6/Nfffdl1mzZmXlypWpqKhIbW1tTj/99Lz3ve9NZWXlXo09bNiw/PVf/3Xmz5+fl156KatWrcratWvT2tqa3r1758gjj8zo0aNzzjnntO+sBgAAAAAAAAAA0BUVLaB27LHH5rTTTsvMmTPz4osv5h//8R9zxRVX5Kijjtph++bm5vz+97/PHXfc0b572tlnn51DDz20KPUOHDgwl19+eS6//PIO9Rs1alTuvPPOnT7v2bNn3v3ud+fd7373vpYIAAAAAAAAAACwXytaQC1JPvGJT2TJkiVZtmxZ5s+fn8985jMZMmRImpub29tcc801Wb16dRYvXpyWlpb2+8ccc0yHw2IAAAAAAAAAAACUTlkxJ+vdu3e+8pWvZOTIke33lixZkvr6+vbXTz31VBYsWLBNOG306NH50pe+tEdHggIAAAAAAAAAALB/KOoOaklSXV2d//2//3f+8Ic/5N57783ixYt32vaII47IxRdfnHe/+90pKytqlg4AAAAAAAAAAIB9VPSAWpJ069Yt48ePz/jx47N69erMnz8/K1euzIYNG1JVVZX+/ftn+PDhGTRoUCnKAwAAAAAAAAAAoBMULaD21FNPtV+/7W1vS0XFm1NXV1fntNNOK1YZAAAAAAAAAAAAFEnRAmrXXHNNkjeP7Rw7dmyxpgUAAAAAAAAAAKBEyoo1Uffu3ZMkxxxzTLGmBAAAAAAAAAAAoISKFlA75JBDkvy/oBoAAAAAAAAAAAAHtqIF1I488sgkyWuvvVasKQEAAAAAAAAAACihogXUxo0blySZN29eXn/99WJNCwAAAAAAAAAAQIkULaB2+umnZ8SIEWltbc13vvOdbNq0qVhTAwAAAAAAAAAAUAJFC6iVlZXlb//2bzNs2LDMmTMnX/ziF/Pss89m8+bNxSoBAAAAAAAAAACAIqoo1kTf+c53kiS1tbVZvHhxXn755fzzP/9z+vTpk6OPPjp9+/ZNjx49djtOt27dMnny5EKXCwAAAAAAwAGusbEx06dPz8yZM7N06dKsXbs2vXv3zoABAzJixIi84x3vyJgxY0pdJgAAdGlFC6g9/PDDO7y/bt26zJ49u0NjCagBAAAAAACwL2bPnp2pU6emoaFhm/tvvPFG3njjjSxatCjPP/+8gBoAAOyjogXUAAAAAAAAYH/w3HPP5Zvf/GY2bdqU3r1757zzzsvIkSPTv3//NDU1ZenSpXn66afzxhtvlLpUAADo8ooWULPrGQAAAAAAAKW2Zs2afPvb386mTZty9NFH5wtf+EKqq6u3aXPCCSfknHPOSUtLS2mKBACAA0jRAmoTJ04s1lQAAAAAAACwQz/96U+zdu3aVFZW5jOf+cx24bStVVQ4jAgAAPZVWakLAAAAAAAAgGJYt25dZsyYkSR597vfnYEDB5a4IgAAOPAJqAEAAAAAAHBQmDVrVpqbm5MkY8eObb/f1NSUurq6rF69Ops3by5VeQAAcECyLzEAAAAAAAAHhfnz57dfH3XUUVmwYEHuuOOO/OlPf2oPpvXr1y9nnHFGPvShD+3y+M+dWbFixW7bVFdXp7y8PElSVmY/ic6w9efoMz14tZa6gAOQ76fCsFY7n7VaGNZq5ztY12pJA2rLly/PnDlz8tJLL2Xt2rVpbGxMVVVV+vbtm2HDhmXUqFEZPHhwKUsEAAAAAADgALF06dL269mzZ+e73/1uWlu3/dXrmjVr8sADD+SJJ57IF77whRx99NEdmmPy5Mm7bTN16tTU1NSkvLw8tbW1HRqf3Rs0aFCpS6BEXi11AQcgP6MKw1rtfNZqYVirne9gXaslCagtWLAgt99+e2bPnr3TNtOmTUuSjB49On/xF3+RY489tljlAQAAAAAAcABat25d+/XNN9+cJLnssssyfvz4VFdXp66uLnfffXemT5+e1atX55prrsk111yTXr16lapkAADo8ooeULv//vvzox/9aLu/RtmZ2bNn58tf/nL+8i//MhdccEGBqwMAAAAAAOBA1djY2H69adOmfPKTn8z48ePb7w0ZMiRTpkxJRUVFHnzwwTQ0NOS3v/1tLrnkkj2eY+rUqbtts+Xo0NbW1jQ0NOzx2OxcWVlZ+85p9fX1aWtrK3FFcGCoq6srdQmwR6xVuoquslYHDhzYfiR9ZyhqQO3hhx/Orbfeus29o446KiNGjMjAgQNTWVmZpqamNDQ0ZN68eXnllVeSvPkv57feemt69+69zX8kAAAAAAAAcOCZNGnSPo8xZcqUTJw4cZt7PXr0aL8eOnToTn/v9Od//ud5+OGHs2nTpjz22GMdCqjV1NR0qE5Bqs7X1tbmc4VO4nuJrsJapas4WNdq0QJq69at2yacduyxx+Z//s//meOOO26nfRYuXJjvf//7WbBgQZLkBz/4Qd7+9renT58+hS4XAAAAAACAA0xVVVX79cknn7zTdn379s2wYcMyb968LF68OC0tLamoKPrBRAAAcEAo2r9JT5s2LRs2bEiSjBkzJp/97Gd3+y/yxx57bL761a/mW9/6Vp599tls2LAhv//97/P+97+/GCUDAAAAAABQAtddd90+j3HIIYdsd6+mpiYvvvhi+/WubHm+efPmrFu3rv1YTgAAoGOKFlB75pln3pywoiJXXnnlHv+VSUVFRaZMmZIrr7wyLS0tmTVrloAaAAAAAADAAeyII44oyLhHHnlkHn/88SS7P15p6+dlZWUFqQcAAA4GRfu36WXLliVJRo8enf79+3eob3V1dUaPHp0kWb58eafXBgAAAAAAwIHvxBNPbL+ur6/fZdvXXnstSdK9e/f06dOnoHUBAMCBrGgBtXXr1iXZ/XbJO7Ol35ZxAAAAAAAAoCNGjhyZfv36JUmefvrpne6iVl9fn8WLFydJTjjhBDuoAQDAPijav01XVVUl2fuA2ZZ+W8YBAAAAAACAjigrK8tFF12UJGloaMgvfvGL7dq0trbmlltuyebNm5Mk5513XlFrBACAA01FsSY69NBDs27dusyZMyetra0pLy/f474tLS2ZM2dO+zgAAAAAAACwNy644II8+uijWbRoUX7xi19k2bJlmThxYvr165fXXnst9957b+bPn58kOeWUU/LOd76zxBUDAEDXVrSA2kknnZTFixdn3bp1+fnPf57LLrtsj/v+x3/8R/sOaqNHjy5UiQAAAAAAABzgevTokc9//vP55je/mZdeeimPPvpoHn300e3anXLKKfnUpz6Vbt26laBKAAA4cBQtoDZx4sTce++9aWtryy9/+cu0trZm0qRJ6d69+077tLS05Oc//3l+9atfJXlz2+WzzjqrSBUDAAAAAABwIDrkkEPyT//0T/n973+fRx55JEuWLMn69evTt2/fHHfccZk4cWJOO+20UpcJAAAHhKIF1IYMGZLzzjsvDzzwQJLk7rvvzn/913/lzDPPzPHHH5+BAwemsrIyTU1Nef311zNv3rw8+uijWbVqVfsY559/foYMGVKskgEAAAAAADhAlZeX57zzzst5551X6lIAAOCAVrSAWpJ89KMfzeuvv56nn346SbJ69erce++9uffee3fb9x3veEcuv/zyQpcIAAAAAAAAAABAJylqQK2srCyf+cxncvfdd+c///M/09jYuNs+VVVV+dCHPpSLLroo3bp1K0KVAAAA7MqsWbOyYMGCLFy4MPX19VmzZk02bNiQqqqqDBo0KKNGjcq5556bww8/vNSlAgAAAAAAJVbUgFqSdOvWLRdffHHOP//8zJgxI7Nnz87ixYuzZs2aNDY2pqqqKv369cvRRx+d0aNHZ9y4cenZs2exywQAAGAHWltb841vfGOHz9avX59FixZl0aJFuf/++/Pf/tt/yyWXXFLcAgEAAAAAgP1K0QNqW/Ts2TPnnXdezjvvvFKVAAAAwF7o1atXRo4cmeHDh+ewww5LdXV1Kisrs2rVqsyZMycPPfRQNmzYkJ/+9Kfp1atXzj///FKXDAAAAAAAlEjJAmoAAAB0PeXl5fn+97+fsrKyHT4fO3ZsLrjggnzuc5/L+vXrc+edd+bcc8/daXsAAAAAAODA5jcEAAAAdMjuwmaDBg3KGWeckSRZs2ZNli5dWoyyAAAAAACA/VBRd1BrbGxMW1tbunXrlp49e+5xv40bN2bz5s0pKytLVVVVASsEAACgM2z933ybNm0qYSUAAAAAAEApFS2gtmbNmkyePDktLS059dRT8+lPf3qP+95444158skn06NHj/z7v/97evfuXcBKAQAA2BfNzc156qmnkiTdunXL4MGDS1wRAAAAAABQKkULqD366KNpaWlJkrzvfe/rUN/3vve9efLJJ9Pc3JxHH3005513XiFKBAAAYC+1tLRk9erVmTdvXu66664sX748SXLWWWd1aAftLVasWLHbNtXV1SkvL0+y+2NH2b2tP0Of58GrtdQFHKB8T3U+a7UwrNXOZ60WhrUKAADQtRQtoPanP/0pSdK3b9+MHDmyQ31HjRqVPn36ZN26dXnuuecE1AAAAPYD9fX1+eQnP7nT52PGjMn/+B//Y6/Gnjx58m7bTJ06NTU1NSkvL09tbe1ezcOODRo0qNQlUCKvlrqAA5SfUZ3PWi0Ma7XzWauFYa0CAAB0LUULqL3yyitJkmHDhnW4b7du3XLsscfm2WefbR8HAACA/VPfvn3z8Y9/PKeffrrdLQAAAAAA4CBXtIDa6tWrkyQDBgzYq/5b+q1ataqzSgIAAGAfDBgwINdee22SpK2tLStXrswzzzyT3//+97n55pvz2muv5QMf+MBejT116tTdtqmurk6StLa2pqGhYa/m4f8pKytr3zmtvr4+bW1tJa4IDhx1dXWlLgH2iLVKV9EV1urAgQPbj6MHAAA42BUtoNZZ/8d2S0tLp4wDAABwIJs0adI+jzFlypRMnDhxp88rKipy1FFHtb8++uij8/a3vz3nnHNOvvrVr+b222/P8uXLM2XKlA7PXVNT06H2wlSdq62tzWcKncj3E12FtUpXYa0CAAB0LUU7a6Vv375JkhUrVuxV/y39+vTp02k1AQAA0PmGDh2ayy67LEkyffr0PPvssyWuCAAAAAAAKJWi7aB22GGHZdWqVZk3b16am5vTo0ePPe7b3NycefPmJXlzW2wAAAB27brrrtvnMQ455JC97jt27NjccsstSZLHH388Y8aM2ed6AAAAAACArqdoAbXRo0fnhRdeSFNTU+6555588IMf3OO+d999d5qampIkJ510UqFKBAAAOGAcccQRJZ2/X79+7devv/56CSsBAAAAAABKqWhHfE6YMCFlZW9O9/Of/zyPPfbYHvV79NFH8x//8R9JkrKysowfP75gNQIAANA5Vq5c2X5dWVlZwkoAAAAAAIBSKtoOaoMGDcq5556b3/72t2lra8v111+fJ598Mu9973tz3HHHtYfXkqStrS0LFizIb37zmzzyyCPt988666wcfvjhxSoZAACAvfT444+3Xx911FElrAQAAAA4WJTffHepS9itsrKy1NbWJknq6urS1tZW4ooAoPCKFlBLkssvvzyLFi3Kiy++mCR55JFH8sgjj6SysjI1NTWpqqpKY2NjVqxY0X6k5xbHHXdcPvaxjxWzXAAAAN5i5syZGT58eA455JCdtpk7d25+8YtfJEnKy8szbty4YpUHAAAAAADsZ4oaUKuoqMiXvvSl/Pu///s2R3w2NTVl2bJlO+13+umn5xOf+ES6d+9ejDIBAADYiSeffDLXX3993v72t2f06NE58sgj07t372zatCmvvfZannrqqTz22GPZvHlzkuRDH/qQnbABAAAAAOAgVtSAWpJUVVXlU5/6VM4+++zcc889mTt3bjZt2rRdu+7du2fUqFG58MILc9JJJxW7TAAAAHaipaUlM2fOzMyZM3fapkePHrnsssty4YUXFrEyAAAAAABgf1P0gNoWJ598ck4++eS0tLRk8eLFWb16dRobG1NVVZXq6uocffTRqagoWXkAAADswH//7/89I0eOzPPPP59XX301q1evzpo1a9KtW7f06dMnRx55ZEaNGpUJEybs8hhQAAAAAADg4FDyBFhFRUWOO+64UpcBAADAHujfv3/OOuusnHXWWaUuBQAAAAAA6ALKSl0AAAAAAAAAAAAAByYBNQAAAAAAAAAAAAqi5Ed8brFq1ao8+OCDeeGFF7Jq1ap07949NTU1OeWUUzJ+/PhUVlaWukQAAAAAAAAAAAA6oCABtccffzwbNmxIkrz97W9PdXX1LttPnz493/ve99Lc3LzN/cWLF+fpp5/OL3/5y/zN3/xNTjjhhEKUCwAAAAAAAAAAQAF0ekBt3bp1uf7667N58+b06dMn7373u3fZ/rHHHsvUqVN32WbFihX5+te/nq997Ws56qijOrNcAAAAAAAAAAAACqSsswecPXt2Nm/enCSZMGFCunfvvtO2GzZsyC233LLNvT59+uQd73hHzjjjjBx++OHt9xsbG3PzzTd3drkAAAAAAAAAAAAUSKfvoPbiiy+2X59++um7bPvb3/4269ata3995pln5q/+6q9SWVnZfu+//uu/MnXq1LS1tWX+/Pl58cUXM3z48M4uGwAAAAAAAAAAgE7W6Tuovfzyy0mSXr165fjjj99l2z/84Q/t14cffniuvPLKbcJpSTJ+/Ph8+MMfbn/9xBNPdGK1AAAAAAAAAAAAFEqnB9Tq6+uTJEcfffQu261evTpLlixpf/1nf/ZnKS8v32Hb973vfe1Hhb700kudUygAAAAAAAAAAAAF1ekBtTfeeCNJUlNTs8t28+bN2+b1qaeeutO2VVVVOfbYY5Mky5cv38cKAQAAAAAAAAAAKIZOD6g1NzcneTNUtisLFy5sv66trU3//v132f6www5LkmzYsGEfKwQAAAAAAAAAAKAYOj2g1qNHjyTJxo0bd9lu64DaMcccs8fjbgnAAQAAAAAAAAAAsH/r9IBanz59kuz6KM62trYsWLCg/fVxxx2323HXr1+fJKmsrNzHCgEAAAAAAAAAACiGTg+oDR06NEmyaNGirF69eodt5s6dm8bGxvbXI0eO3O24K1euTJL069dv34sEAAAAAAAAAACg4Do9oDZq1Kgkb+6Sdscdd+ywzT333NN+PWDAgAwbNmyXY7a1tWXRokVJksGDB3dSpQAAAAAAAAAAABRSpwfUxo8fn+7duydJHnroodx0001Zvnx5WlpasmzZsnznO9/JH//4x23a7878+fPT1NSU5P/t0AYAAAAAAAAAAMD+raKzB+zbt28uvfTS3H777UmSadOmZdq0aTts27t371x00UW7HfO//uu/2q9POOGEzikUAAAAAAAAAACAgur0HdSS5OKLL86ECRN22aaioiJ//dd/nT59+uyy3bp16/LII4+09xk5cmSn1QkAAAAAAAAAAEDhdPoOaknSrVu3TJkyJaNGjcrdd9+dJUuWbPP8xBNPzEc+8pEMHz58t2Pdc889aWxsTJKcdNJJqaqqKkTJAAAAAAAAAAAAdLKCBNS2mDBhQiZMmJCVK1dm5cqVKSsry6BBg3a7a9rWzjnnnIwfPz5JOtQPAAAAAAAAAACA0ipoQG2LAQMGZMCAAXvVd+DAgZ1cDQAAAAAAAAAAAMVQVuoCAAAAAAAAAAAAODAJqAEAAAAAAAAAAFAQAmoAAAAAAAAAAAAUhIAaAAAAAAAAAAAABVFR6gL2Vw0NDbn//vsza9asrFixIhUVFamtrc0ZZ5yR97znPamsrOz0OZuamvL3f//3qa+vT5IMHDgwN954Y6fPAwAAAAAAAAAAUAwCajvw1FNP5YYbbsjGjRvb7zU1NWXhwoVZuHBhpk2blquuuiq1tbWdOu/Pfvaz9nAaAAAAAAAAAABAVyeg9haLFi3K9ddfn+bm5lRVVeWSSy7J6NGj09zcnEceeSTTpk3L8uXL8/Wvfz3f+MY30rNnz06b97777kv37t1TUVGxTTgOAAAAAAAAAACgKxJQe4tbb701zc3NKS8vz5e+9KUcf/zx7c9Gjx6dwYMH58c//nGWL1+eX//615k0adI+z9nW1pbvfve7aWtry6WXXpqHHnpIQA0AAAAAAAAAAOjyykpdwP5kwYIFef7555MkZ5111jbhtC0uvPDCHHHEEUmS+++/Py0tLfs873333ZeXXnophx9+eC655JJ9Hg8AAAAAAAAAAGB/IKC2lZkzZ7Zfn3XWWTtsU1ZWlgkTJiRJ1q9fnzlz5uzTnA0NDfnZz36WJLniiitSUWFTOwAAAAAAAAAA4MAgoLaVefPmJUkqKyszbNiwnbYbOXLkdn321i233JKmpqaMHz8+o0aN2qexAAAAAAAAAAAA9icCaltZsmRJkqS2tjbl5eU7bXf44Ydv12dvPPLII/njH/+Y3r1753/8j/+x1+MAAAAAAAAAAADsj/aL8ySbm5uzbt26tLW15dBDDy1ZDWvXrk2S1NTU7LJtnz59UllZmaampqxYsWKv5lu3bl1uvfXWJMlHPvKR9OvXb6/G2Zk9qau6uro9iFdWtv9nFVtLXcABqCt83el8W3/drQH2Z9YqXYW1CgAAAAAAADtXkoDa5s2b8/jjj+cPf/hD5s2bl3Xr1iVJunXrljvuuGObtmvWrMljjz2WJBk8eHBOPvnkgtTU2NjYfl1VVbXb9lVVVWlqatqmX0f8+Mc/zhtvvJHjjz8+55xzzl6NsSuTJ0/ebZupU6empqYm5eXlqa2t7fQaOturpS7gANQVvu4U1qBBg0pdAuwRa5WuwloFAAAAAACAbRU9oLZs2bJcd911eeWVV7Z7tnnz5u3u9e3bN/fdd1/q6upSXV2dqVOnFmRniubm5vbriordfyxb2mzdb0/NnTs3Dz30UMrLy3PFFVekW7duHR4DAAAAAAAAAABgf1fUgNqSJUvy5S9/ORs2bGi/V1lZmSRpamraYZ9u3brlvPPOy49+9KOsXr06c+fOzejRozu9th49erRft7S07Lb9ljZb99sTmzZtyk033ZTNmzfnggsuyNChQztW6B6aOnXqbttUV1cnSVpbW9PQ0FCQOti/1dXVlboESqCsrKx9h5/6+vq0tbWVuCLYMWuVrsJaLZyBAwe2H0kPAAAAAABA11S0gFpbW1v+5V/+pT2cNnr06Fx22WUZPnx4vv/97+eBBx7Yad93vetd+dGPfpQkefbZZwsSUNv6WM89ObZzS5s9OQ50a//5n/+ZZcuWpaamJpMmTepYkR1QU1PTofZ+kXpw8nWnra3NOqBLsFbpKqxVAAAAAAAA2FbRAmp/+MMfsmzZsiTJaaedlr/927/d46M6BwwYkEGDBqW+vj4vvfRSQerr0aNH+vbtm7Vr12bFihW7bLtu3br2Hd86GgS76667kiQnnXRSnn766R222RJ+a2xszCOPPJIk6d+/f0GCeQAAAAAAAAAAAIVStIDazJkzk7wZBLviiiv2OJy2xZFHHpn6+vosX768EOUlSYYMGZLnn38+dXV1aW1t3elxQluCdlv6dMSWo0GnT5+e6dOn77Lt2rVr8+1vfztJMnLkSAE1AAAAAAAAAACgS+lYSmwfbNn57IQTTki/fv063L9v375J3gxtFcqIESOSJE1NTbvcqW3u3Lnb9QEAAAAAAAAAAGBbRdtBbc2aNUmSgQMH7lX/LbuZtbW1dVpNb3XaaaflV7/6VZLkoYceyvDhw7dr09bWlocffjhJ0rt374waNapDc9x55527bXPllVemoaEhAwcOzI033tih8QEAAAAAAAAAAPYXRdtBrXv37kn+3xGXHbUl4Na7d+9Oq+mtjjvuuJx44olJ3gyozZ8/f7s299xzT5YuXZokueCCC1JRsW3Gb86cOZk0aVImTZokXAYAAAAAAAAAABzUihZQ69+/f5Kkrq5ur/ovXLgwSVJTU9NpNe3IRz/60fTo0SOtra25+uqr88tf/jLz58/P7Nmzc9NNN+XHP/5xkmTw4MG56KKLCloLAAAAAAAAAABAV1a0Iz6PP/741NXVZeHChVm9enWqq6v3uO9zzz2XlStXJkn7DmeFcswxx+RTn/pUbrjhhmzcuDG33377dm0GDx6cq666Kj179ixoLQAAAAAAAAAAAF1Z0XZQO/XUU5O8ecTnT3/60z3ut3HjxvzgBz9of33GGWd0em1vNXbs2Fx77bX5sz/7swwePDiVlZXp3bt3jj322HzkIx/Jt771rdTW1ha8DgAAAAAAAAAAgK6saDuonXbaaRk6dGhefvnlPPzww+ndu3c+8pGPpKJi5yW88sor+bd/+7csW7YsSXLSSSdl+PDhRal34MCBufzyy3P55Zd3qN+oUaNy55137tPcN9544z71BwAAAAAAAAAA2B8ULaCWJFdeeWW+8pWvZOPGjbnvvvvy6KOP5p3vfGdefvnl9jb33XdfVq9enXnz5mXevHnZvHlzkqRfv375xCc+UcxyAQAAAAAAAAAA2AdFDagNHTo0n/3sZ3PddddlzZo1Wb16dR544IFt2tx2223b9auurs5nP/vZHHroocUqFQAAAAAAAAAAgH1U1IBakowcOTLXXHNNbr/99syYMSMtLS07bVtWVpZ3v/vd+fM///MccsghRawSAAAAAACAA9kzzzyT6dOnZ8GCBVm9enU2b96cfv365Zhjjsm4ceNy+umnp6ysrNRlAgBAl1f0gFry5o5okydPzkc+8pH86U9/yvz587Nq1aps2LAhlZWV6d+/f4YPH54xY8ZkwIABpSgRAAAAAACAA9CmTZvyr//6r3niiSe2e7ZixYqsWLEiTz31VE488cR89rOfTe/evUtQJQAAHDhKElDbol+/fjnzzDNz5plnlrIMAAAAAAAADhI/+MEP2sNp/fv3z/vf//4cc8wxqaioyCuvvJK77rorDQ0Nef7553P99dfni1/8YokrBgCArq2kATUAAAAAAAAoltWrV2fatGlJkt69e+cb3/hGampq2p+fcMIJGTduXD7zmc+koaEhzz77bBYuXJhjjz22VCUDAECXV1bqAgAAAAAAAKAYFixYkM2bNydJzjrrrG3CaVv06tUrf/Znf9b+ev78+UWrDwAADkRF3UHt2WefzaZNm9KjR4+cfPLJe9zvueeeS3Nzc4f7AQAAAAAAwBYtLS3t14MGDdppu9ra2h32AQAAOq5oAbUlS5bkn//5n5MkF1xwQYeCZrNmzcr999+fbt265frrr9/mPwoAAAAAAABgTxx++OHt1/X19TttV1dXt8M+AABAxxXtiM/HH3+8/frcc8/tUN9zzjknSbJ58+Y8+uijnVoXAAAAAAAAB4ejjjoqI0aMSJJMnz49K1eu3K7Nxo0bc9999yVJDjvssIwZM6aoNQIAwIGmaDuoPf/880ne3C55yJAhHep75JFHZuDAgWloaGgfBwAAAAAAADpq8uTJ+ed//ufU19fnc5/7XC6++OIcc8wxKS8vzyuvvJK777479fX16du3b/76r/86FRUd+3XaihUrdtumuro65eXlSZKysqLtJ3FA2/pz9JmyP7NWSZLWUhdwAPL9VBjWauc7WNdqUY/4TJKhQ4fuVf+jjz46DQ0N7eMAAAAAAABARx1++OH5+te/nt/+9re566678sMf/nCb5+Xl5bnooovyvve9LzU1NR0ef/LkybttM3Xq1NTU1KS8vDy1tbUdnoNdGzRoUKlLgD1irR68Xi11AQcg/zwtDGu18x2sa7Vosbx169YlSfr167dX/bf0W7t2bafVBAAAAAAAwMHn6aefzowZM9LY2Ljds9bW1jz22GOZMWNGNm/eXILqAADgwFK0HdTKy8vT0tKSTZs27VX/ve0HAAAAAABA1zJp0qR9HmPKlCmZOHHidvd/+MMf5p577kmSnHrqqXn/+9+foUOHpqysLEuXLs3999+f6dOn5yc/+UlefPHF/N3f/V2HjmKaOnXqbttUV1cneTMM19DQsMdjs3NlZWXtu1HV19enra2txBXBjlmrUBh1dXWlLgH2SFdZqwMHDmw/kr4zFC2g1rdv3zQ1Ne31B718+fL2cQAAAAAAAKCjZs2a1R5OmzhxYqZMmbLN82OOOSZTpkxJTU1N/uM//iMzZ87MAw88kAsuuGCP5+josaDCKZ2vra3N50qXYK1C5/G9RFdxsK7VogXUjjrqqLz++utZsGBBVq5cmQEDBuxx35UrV2bhwoVJkiFDhhSqRAAAAAAAAPYD11133T6Pccghh2x3b9q0aUmSbt265bLLLttp3w984AO5995709jYmIceeqhDATUAAGBbRQuojRkzJrNmzUpbW1t+9KMf5X/9r/+1x31/+MMfticIx4wZU6gSAQAAAAAA2A8cccQRBRl36dKlSZJ+/frtcjOFHj165Mgjj8yLL77Y3gcAANg7ZcWaaMKECendu3eS5NFHH833vve9tLS07LJPS0tLbrnlljz22GNJkl69emXixImFLhUAAAAAAIADUHl5eZI9O1ppy++xtvQBAAD2TtF2UOvZs2cuu+yyfO9730uS/Pa3v80f//jHnHPOORk1alQOO+ywVFVVpbGxMfX19Zk9e3amTZuWhoaG9jEmTZqUPn36FKtkAAAAAAAADiADBw7Mq6++mrVr12bJkiUZMmTIDtutW7cur776apJk0KBBxSwRAAAOOEULqCXJ+eefnyVLluSBBx5IkjQ0NOSOO+7Y474XXHBBIcsDAAAAAADgADZ27NjMmjUrSXLbbbflc5/7XCoqtv11WVtbW77//e+376D29re/veh1AgDAgaSoAbUk+Z//839myJAh+clPfpLGxsbdtq+qqspHPvKRnH/++UWoDgAAAAAAgAPVxIkTc++992bp0qV59tln8/nPfz7vfe97c/TRR6esrCxLlizJb3/728yfPz9J0r9//1x44YUlrhoAALq2ogfUkjd3QzvzzDPz4IMP5plnnsmCBQvS3Nzc/rxHjx457rjjcsopp+Scc85J7969S1EmAAAAAAAAB5CKiop84QtfyLe+9a28/PLLeeWVV3LTTTftsO2gQYPy6U9/Ov369StylQAAcGApSUAtSXr37p2LL744F198cZJk48aN2bhxY3r27JmePXuWqiwAAAAAAAAOYAMHDszXv/71PProo3n88cezaNGirFmzJps3b06fPn0ydOjQnHrqqRk/fnyqqqpKXS4AAHR5JQuovZVgGgAAAAAAAMVQUVGR8ePHZ/z48aUuBQAADnhlpS4AAAAAAAAAAACAA5OAGgAAAAAAAAAAAAVR8iM+Gxsbs3HjxrS2tu5xn0MPPbSAFQEAAAAAAAAAANAZih5Qa2try4wZM/LII49k4cKFWbt2bYf6d+vWLXfccUeBqgMAAAAAAAAAAKCzFDWgVl9fn2uuuSavvPLKXo+xefPmTqwIAAAAAAAAAACAQilaQK2pqSlf+9rXUl9fv839Hj16pHfv3ikvLy9WKQAAAAAAAAAAABRB0QJq9913X3s4rby8PO973/ty1lln5YgjjihWCQAAAADsQvnNd5e6hN0qKytLbW1tkqSuri5tbW0lrggAAAAA2JWiBdSefPLJ9uu/+Zu/yemnn16sqQEAAAAAAAAAACiBogXUli9fniQZNmyYcBoAAMAB6I9//GO+/vWvt7++9NJLM2nSpBJWBAAAAAAAlFpZsSZqaWlJkgwdOrRYUwIAAFAkjY2NueWWW0pdBgAAAAAAsJ8pWkBtwIABSZLW1tZiTQkAAECR/OxnP0tDQ0P69+9f6lIAAAAAAID9SNECaieeeGKS5JVXXinWlAAAABTBSy+9lPvvvz/du3fPZZddVupyAAAAAACA/UjRAmrnn39+unXrlsWLF+ell14q1rQAAAAUUFtbW7773e+mra0tH/jAB1JbW1vqkgAAAAAAgP1I0QJqw4YNywc/+MEkybe//e2sXr26WFMDAABQIPfcc08WLVqUwYMH5+KLLy51OQAAAAAAwH6maAG1JJk0aVIuvfTS1NXV5dOf/nTuu+++rFy5spglAAAA0Enq6+vz85//PElyxRVXpHv37iWuCAAAAAAA2N9UFGuiT37yk/9v0oqKrF27Nrfddltuu+229OrVK7169Uq3bt12O063bt1yww03FLJUAAAA9sAtt9ySpqamjBs3LqNHj+7UsVesWLHbNtXV1SkvL0+SlJUV9e+vDkhbf4Y+T/Zn1ipJ0lrqAg5Qvqc6n7VaGNYqAABA11K0gFpDQ8NOn23YsCEbNmwoVikAAADsoxkzZuSZZ55J7969c/nll3f6+JMnT95tm6lTp6ampibl5eWpra3t9BoOZoMGDSp1CbBHrNWD16ulLuAA5Z+nnc9aLQxrFQAAoGvxZ0YAAAB0yLp163LbbbclSf78z/88/fv3L3FFAAAAAADA/qpoO6j927/9W7GmAgAAoIB++MMf5o033sjw4cNz7rnnFmSOqVOn7rZNdXV1kqS1tXWXu3azZ8rKytp3o6qvr09bW1uJK4Ids1ahcOrq6kpdAuyRrrBWBw4c2H4cPQAAwMGuaAG1gQMHFmsqAACAg96kSZP2eYwpU6Zk4sSJ29ybM2dOpk+fnrKyslxxxRUpKyvMxtw1NTUdai+g0rna2tp8pnQJ1ip0Lt9PdBXWKgAAQNfiiE8AAAD2yKZNm3LTTTclSS644IIcffTRpS0IAAAAAADY7xVtBzUAAACK57rrrtvnMQ455JBtXj/xxBNZvnx5ysvLM2TIkDzyyCPb9VmyZEn79auvvtreZvjw4e1H8gEAAAAAAAeP/SKg1tzcnHXr1qWtrS2HHnpoqcsBAADo8o444ohOH7OlpSVJ0tramu9+97u7bf/EE0/kiSeeSPLmcaECagAAAAAAcPApSUBt8+bNefzxx/OHP/wh8+bNy7p165Ik3bp1yx133LFN2zVr1uSxxx5LkgwePDgnn3xy0esFAAAAAAAAAACg44oeUFu2bFmuu+66vPLKK9s927x583b3+vbtm/vuuy91dXWprq7O1KlTU1ZWVoxSAQAA2MrEiRMzceLEXbaZM2dOvvrVryZJLr300kyaNKkIlQEAAAAAAPuroia9lixZki9+8YvbhNMqKytTWVm50z7dunXLeeedlyRZvXp15s6dW/A6AQAAAAAAAAAA2HdFC6i1tbXlX/7lX7Jhw4YkyejRo3P11Vfnhz/84W7/Av9d73pX+/Wzzz5byDIBAAAAAAAAAADoJEU74vMPf/hDli1bliQ57bTT8rd/+7d7fFTngAEDMmjQoNTX1+ell14qZJkAAAAAAAAAAAB0kqLtoDZz5swkSY8ePXLFFVfscThtiyOPPDJJsnz58k6vDQAAAAAAAAAAgM5XtB3Utux8dsIJJ6Rfv34d7t+3b98kydq1azu1LgAAADrPqFGjcuedd5a6DAAAAAAAYD9RtB3U1qxZkyQZOHDgXvUvLy9PkrS1tXVaTQAAAAAAAAAAABRO0QJq3bt3T5K0tLTsVf8tAbfevXt3Wk0AAAAAAAAAAAAUTtECav3790+S1NXV7VX/hQsXJklqamo6rSYAAAAAAAAAAAAKp6JYEx1//PGpq6vLwoULs3r16lRXV+9x3+eeey4rV65Mkpx44okFqhAAgP1R6xXvL3UJu9Sa5NVSF9FB5TffXeoSAAAAAAAAOEgUbQe1U089NcmbR3z+9Kc/3eN+GzduzA9+8IP212eccUan1wYAAAAAAAAAAEDnK1pA7bTTTsvQoUOTJA8//HBuu+22tLS07LLPK6+8kq985StZtmxZkuSkk07K8OHDC14rAAAAAAAAAAAA+65oR3wmyZVXXpmvfOUr2bhxY+677748+uijeec735mXX365vc19992X1atXZ968eZk3b142b96cJOnXr18+8YlPFLNcAAAAAAAAAAAA9kFRA2pDhw7NZz/72Vx33XVZs2ZNVq9enQceeGCbNrfddtt2/aqrq/PZz342hx56aLFKBQAAAAAAAAAAYB8V7YjPLUaOHJlrrrkmEydOTEXFrvNxZWVlmTBhQr7xjW/k2GOPLVKFAAAAAAAAAAAAdIai7qC2RXV1dSZPnpyPfOQj+dOf/pT58+dn1apV2bBhQyorK9O/f/8MHz48Y8aMyYABA0pRIgAAAAAAAAAAAPuoaAG1DRs2tF/36tUrSdKvX7+ceeaZOfPMM4tVBkDBtV7x/lKXsEutSV4tdREdVH7z3aUuAQAAAAAAAADYC0ULqH3sYx9L8ubuaVOnTk1ZWdFPFwUAAAAAAAAAAKCIipYS2xJIO+GEE4TTAAAAAAAAAAAADgJFS4r1798/SdK7d+9iTQkAAAAAAAAAAEAJFe2Iz8MOOyyrVq3KqlWrijUlAAAAAAAAAACwF8pvvrvUJexSWVlZamtrkyR1dXVpa2srcUXsTNF2UHvnO9+ZJHn++efT1NRUrGkBAAAAAAAAAAAokaIF1CZOnJgBAwZk48aN+elPf1qsaQEAAAAAAAAAACiRogXUevXqlU996lPp1atXfvOb3+Smm27Khg0bijU9AAAAAAAAAAAARVZRrIkefvjhJMl73vOe3HXXXZk2bVr+8Ic/5OSTT86wYcPSr1+/9OjRY4/GmjBhQiFLBQAAAAAAAAAAoBMULaD2ne98Z7t7zc3Neeqpp/LUU0/t8TjdunUTUAMAAAAAAAAAAOgCinbEZ2fZvHlzqUsAAAAAAAAAAABgDxRtBzW7ngEAAAAAAAAAABxcihZQmzJlSrGmAgAAAAAAAAAAYD/Q5Y74BAAAAAAAAAAAoGsQUAMAAAAAAAAAAKAgBNQAAAAAAAAAAAAoiIpSTr548eK88MILef3117N+/fq0tbVl8uTJpSwJAAAAAAAAAACATlKSgNrjjz+en//851myZMl2z94aUFu9enU+97nPpbW1NSeccEI+/elPF6tMAAAAAAAAAAAA9kHRA2o33XRTpk2btsftq6urM3r06MyYMSNPPfVUVq5cmQEDBhSwQgAAAAAAAAAAADpDUQNqd9xxxzbhtDFjxmT06NF55plnMmfOnJ32mzBhQmbMmJHNmzdn1qxZOffccwtea0NDQ+6///7MmjUrK1asSEVFRWpra3PGGWfkPe95TyorK/d67CVLlmT27NlZsGBBXn311bzxxhtZu3ZtysrK0r9//xx77LEZN25cxo4dm27dunXiuwIAAAAAAAAAACieogXUli9fnrvuuitJ0qtXr3z605/OqFGjkiSvv/76LgNqo0ePTmVlZZqamjJ37tyCB9Seeuqp3HDDDdm4cWP7vaampixcuDALFy7MtGnTctVVV6W2tnavxv/P//zPzJgxY4fP6uvrU19fn8ceeywjR47M3//936dv3757NQ8AAAAAAAAAAEApFS2g9uCDD6atrS1J8ld/9Vft4bQ9UVZWlqFDh2b+/Pl59dVXC1VikmTRokW5/vrr09zcnKqqqlxyySUZPXp0mpub88gjj2TatGlZvnx5vv71r+cb3/hGevbs2eE5ysvLM3z48IwYMSJHHXVUqqur069fv6xbty7Lli3L7373u7z66quZO3duvvnNb+Yf//EfU1ZWVoB3CwAAAAAAAAAAUDhFC6jNnj07SVJbW5vTTz+9w/0HDhyY+fPnZ+XKlZ1d2jZuvfXWNDc3p7y8PF/60pdy/PHHtz8bPXp0Bg8enB//+MdZvnx5fv3rX2fSpEkdnuMTn/hEysvLd/js5JNPzvnnn5//83/+T2bOnJn58+dn1qxZGTt27F6/JwAAAAAAAAAAgFIo2rZcDQ0NSZLjjjtur/pv2als62M3O9uCBQvy/PPPJ0nOOuusbcJpW1x44YU54ogjkiT3339/WlpaOjzPzsJpW5SVleX9739/++stNQEAAAAAAAAAAHQlRQuoNTU1JUmqqqr2qX/37t07raa3mjlzZvv1WWedtcM2ZWVlmTBhQpJk/fr1mTNnTkFq2fro0E2bNhVkDgAAAAAAAAAAgEIqWkCtT58+SZI1a9bsVf/XXnstSdKvX79Oq+mt5s2blySprKzMsGHDdtpu5MiR2/XpbI888kj79eGHH16QOQAAAAAAAAAAAAqpolgT1dbWZvXq1VmwYEGH+65duzYvvfRSkmTo0KGdXVq7JUuWJHmz1l0dw7l1YGxLn86wZs2a1NXVZdq0aZk+fXqSpG/fvnn3u9/d4bFWrFix2zbV1dXt77OsrGhZxb3WWuoCDkBd4eveFVmrnc9aPTht/XW3Bg5ufq52Pt9TAAAAAAAAFEvRAmonn3xyXnjhhaxcuTJPPvlkTj311D3u+6tf/SotLS3t4xRCc3Nz1q5dmySpqanZZds+ffqksrIyTU1NexQE25V/+Id/yNy5c3f4rG/fvvnMZz6T3r17d3jcyZMn77bN1KlTU1NTk/Ly8tTW1nZ4jmJ7tdQFHIC6wte9K7JWO5+1yqBBg0pdAiXk52rn83MVAAAAAACAYina1gkTJ05M9+7dkyS33HJL6uvr96jf9OnTc8899yR5Mxg2fvz4gtTX2NjYfl1VVbXb9lvabN2vM11wwQW57rrrcsIJJxRkfAAAAAAAAAAAgEIr2g5qNTU1ueiii/Kf//mfWb16da666qp8+MMfzplnnrld2+bm5syfPz8PPPBAZs6c2X7/wx/+8B6Fx/ZGc3Nz+3VFxe4/li1ttu63N6ZMmdIeclu/fn0WLlyY3/3ud/nNb36T1157LZ/4xCdSXV3d4XGnTp262zZbxm1tbU1DQ0OH56Drq6urK3UJsEes1YNTWVlZ+85p9fX1aWtrK3FFcODoKj9XBw4c2H4kPQAAAAAAAF1T0QJqSTJp0qQsWbIkM2fOzLp16/KDH/wgP/jBD7YJhH3sYx/Lhg0btus7YcKEvPe97y1YbT169Gi/3nKc6K5sabN1v73x1iPLTjzxxJx//vn5P//n/2TWrFm56qqrcvXVV+/22NG36mh7v/Q/OPm601VYq7S1tVkH0Il8PwEAAAAAAFAsRTviM0m6deuWv/3bv80HP/jBlJX9v6m3DoS9NZxWVlaWSy+9NFOmTClobVvvzLYnx3ZuaVOIHd169OiRKVOmpLKyMitWrMiPf/zjTp8DAAAAAAAAAACg0Iq6g1ryZuDsv/23/5azzz479957b5555pksX758u3Y1NTV5+9vfnosuuiiHHXZYwevq0aNH+vbtm7Vr12bFihW7bLtu3bo0NTW111kI/fr1y4gRI/Lcc8/lqaeeSktLyx4dPQoAAAAAAHAgamxszEsvvZQFCxZkwYIFWbhwYRoaGpIkAwcOzI033tih8V555ZX85je/yZ/+9KesXLkyVVVVOeKIIzJu3Licc845KS8vL8TbAACAg07JEk8DBw7MRz/60SRvBr5WrVqVDRs2pLKyMtXV1amuri56TUOGDMnzzz+furq6tLa27vQ/PJYtW7ZNn0Lp169fkqSpqSlr167NIYccUrC5AAAAAAAA9mff/OY3M2fOnE4Z68EHH8z3v//9bU752bRpU1544YW88MILmT59ej7/+c+3/64GAADYe/vFllx9+vRJnz59Sl1GRowYkeeffz5NTU156aWXMnz48B22mzt37jZ9CmXlypXt14U4ShQAAAAAAKCr2Lx5c/t1nz59cuyxx2bevHlpbGzs0DizZs3KzTffnM2bN6d///754Ac/mOHDh2fdunV58MEHM3PmzCxYsCDXXntt/uEf/iFlZWWd/VYAAOCgsl8E1PYXp512Wn71q18lSR566KEdBtTa2try8MMPJ0l69+6dUaNGFaSWFStWZP78+Une3G2uZ8+eBZkHAAAAAACgKxg3blzOPffcHHfccamtrU2SXHnllR0KqLW0tOQHP/hBNm/enJ49e+ZrX/ta+1hJ8ra3vS233HJLfvvb3+aFF17If/3Xf2XixImd/VYAAOCg4k8+tnLcccflxBNPTPJmQG1LQGxr99xzT5YuXZokueCCC1JRsW3Gb86cOZk0aVImTZqUG2+8cbv+y5Yty+zZs3dZx4YNG/Kv//qv7dtKjx8/fq/eDwAAAAAAwIHi3HPPzbhx47YJlHXUzJkz89prryVJPvCBD+xwrL/8y79M7969kyR33333Xs8FAAC8yQ5qb/HRj340X/7yl9Pc3Jyrr746H/jABzJq1Kg0Nzfn0UcfzYMPPpgkGTx4cC666KIOj79q1ar84z/+Y4YOHZpTTz01w4YNS3V1dcrLy7N69erMmzcvv//977N69eokyZFHHplLLrmkE98hAAAAAADAwenJJ59sv97ZzmiVlZU544wz8uCDD2bJkiVZtmxZDj/88CJVCAAAB56SBNReeOGFzJgxIwsXLkx9fX02btyY1tbWPerbrVu33HHHHQWr7ZhjjsmnPvWp3HDDDdm4cWNuv/327doMHjw4V1111T4du/nyyy/n5Zdf3mWbt7/97ZkyZUoqKyv3eh4AAAAAAADe9MILLyRJDj/88FRXV++03ciRI9s3LZg3b56AGgAA7IOiBtTWrVuXf/u3f8sf//jHvR5j8+bNnVjRjo0dOzbXXntt7rvvvsyaNSsrV65MRUVFamtrc/rpp+e9733vXofGRowYkS9+8Yv505/+lIULF2blypVZvXp1mpub07NnzwwaNCjDhw/PmWeemRNOOKGT3xkAAAAAAMDBqbGxMStWrEiS3QbOjjjiiPbrpUuXFrQuAAA40BUtoNba2pqrr746ixYtKtaU+2TgwIG5/PLLc/nll3eo36hRo3LnnXfu9HlFRUXGjBmTMWPG7GuJAAAAAAAA7KEt4bQkqamp2WXbrZ+//vrrez3PzlRXV6e8vDxJUlZW1qHx2bGtP0efKfsza5Uk2bPz5egI308HJz9Tu46iBdR+97vfbRNOe+c735mzzz47Rx99dPr27dv+L+EAAAAAAADQ2TZu3Nh+XVVVtcu2Wz9vbGzs0DyTJ0/ebZupU6empqYm5eXlqa2t7dD47N6gQYNKXQLsEWv14PVqqQs4APnnKX6m7t+KFlB77LHH2q8vv/zyvO997yvW1AAAAAAAABzkNm3a1H5dUbHrX5Ft/XzrfgAAQMcVLaC2ZMmSJMnhhx8unAYAAAAAAHAAmjRp0j6PMWXKlEycOHHfi3mL7t27t1+3tLTssu3Wz7futyemTp262zbV1dVJktbW1jQ0NHRofHasrKysfeeU+vr6tLW1lbgi2DFrFQqjrq6u1CVQAn6mFs7AgQM79TTMogXUtmx/PHz48GJNCQAAAAAAAEmSnj17tl/v7tjOrZ/v7jjQt6qpqelQe79I7XxtbW0+V7oEaxU6j+8l/EzdvxUtoDZgwIDU19enrKysWFMCAAAAAABQRNddd90+j3HIIYd0QiXbGzBgQPv1ihUrdtl26+eHHnpoQeoBAICDRdECascee2zq6+uzdOnSYk0JAAAAAABAER1xxBGlLmGnevbsmZqamqxYsSLLli3bZdutf5+1P78nAADoCoq2ndm5556bJFmwYEGWL19erGkBAAAAAAAgSXLCCSckSZYtW5bVq1fvtN3cuXPbr0eMGFHosgAA4IBWtIDa6NGjc/bZZ6etrS3/9m//lqampmJNDQAAAAAAADn11FPbr6dPn77DNk1NTXnssceSJEOGDMnhhx9ejNIAAOCAVbSAWpJ8/OMfz4QJE7JgwYJ8/vOfz5NPPpm2trZilgAAAAAAAMBB6rTTTsthhx2WJPnlL3+Zurq67dr86Ec/yvr165Mk73//+4taHwAAHIgqOnOwr371q3s2aUVFli1blmuvvTY9evTI4Ycfnl69eu1R327duuV//+//vS9lAgAAAAAA0MXU1dXlhRde2OZeY2Nj+/++dUe0t73tbamurt7mXkVFRT72sY/lm9/8ZjZu3Jgvf/nL+dCHPpTjjjsu69aty7Rp0/LEE08kefM40PHjxxfs/QAAwMGiUwNqc+fO7XCf5ubmLF68uDPLAAAAAAAA4ADzwgsv5Dvf+c4On61du3a7Z1/5yle2C6glydvf/vZcccUV+f73v5833ngj3//+97drc9xxx+XTn/50ysqKehgRAAAckDo1oAYAAAAAAAD7u3PPPTfHH3987r///syePTsrV65MVVVVjjjiiIwbNy7nnHNOysvLS10mAAAcEDo1oPaVr3ylM4cDAAAAAACAJMnEiRMzceLEThvvqKOOyl/91V912ngAAMCOdWpAbeTIkZ05HAAAAAAAAAAAAF1YWakLAAAAAAAAAAAA4MAkoAYAAAAAAAAAAEBBCKgBAAAAAAAAAABQEBWlnPy5557L7Nmzs2jRoqxduzYbN25Mz54907dv3xxzzDEZPXp0Tj755FKWCAAAAAAAAAAAwF4qSUBt5syZ+clPfpK6urqdtnnuuedy1113pba2Nv/9v//3nHrqqUWsEAAAAAAAAAAAgH1V9CM+f/jDH+Zf/uVfdhlO21pdXV2uvfba/PCHPyxwZQAAAAAAAAAAAHSmou6gdtddd+Xee+9tf11eXp63ve1tGTFiRAYOHJiqqqo0NjamoaEh8+bNyzPPPJPW1tYkyb333pv+/fvn4osvLmbJAAAAAAAAAAAA7KWiBdRWrFiRn//85+2vx44dm49//OMZMGDATvusWrUq3/ve9/Lkk08mSX7xi19k3LhxqampKXi9AAAAAAAAAAAA7JuiHfE5bdq0bNq0KUny7ne/O5/5zGd2GU5LkkMOOSSf/vSnM378+CRJc3Nzfv/73xe8VgAAAAAAAAAAAPZd0QJqzz77bJKkqqoq/9//9/91qO/HP/7xVFVVJUmeeeaZzi4NAAAAAAAAAACAAihaQK2+vj5JMmrUqPaw2Z6qqqrK6NGjtxkHAAAAAAAAAACA/VvRAmrr169PklRXV+9V//79+28zDgAAAAAAAAAAAPu3ogXUevfunSRZvXr1XvXf0m/LOAAAAAAAAAAAAOzfihZQGzRoUJJkzpw5aWxs7FDfxsbGzJkzZ5txAAAAAAAAAAAA2L8VLaA2ZsyYJG+GzW699dYO9b3tttvaQ21bxgEAAAAAAAAAAGD/VlGsic4+++zcfffd2bRpUx566KE0NjbmYx/7WPr377/TPmvWrMmtt96aRx55JEnSvXv3nH322cUqGQAAgB34h3/4h8ydO3eP2t55550FrgYAAAAAANifFS2gduihh+aDH/xgfvaznyVJHnvssTz55JM55ZRTMmLEiAwcODCVlZVpamrK66+/nnnz5uWPf/xjNm3a1D7GBz/4wRx66KHFKhkAAAAAAAAAAIB9ULSAWvJmwGzVqlX57W9/myRpaWnJk08+mSeffHK3fd/znvfkgx/8YKFLBAAAYA8de+yxmTx5cqnLAAAAAAAA9mNFDaglycc//vGceOKJuf3221NfX7/b9oMGDcpf/MVf5IwzzihCdQAAAOypysrKHHXUUaUuAwAAAAAA2I8VPaCWJO9617tyxhln5Nlnn83s2bOzePHirFmzJo2Njamqqkq/fv1y9NFHZ/To0RkzZky6detWijIBAAAAAAAAAADYByUJqCVJt27d8ra3vS1ve9vbSlUCAAAAAAAAAAAABVRW6gIAAAAAAAAAAAA4MJVsBzUAAAC6tqVLl+YLX/hCli1blk2bNqVv374ZNmxY3vnOd+bMM89MRcXe/yfnihUrdtumuro65eXlSZKyMn9/ta+2/gx9nuzPrFWSpLXUBRygfE91Pmu1MKxVAACArqVgAbW77747zc3NSZKTTz45xx9/fIfHmD9/fp577rkkSVVVVS688MJOrREAAIC998Ybb+SNN95of71y5cqsXLkyTz31VO6666783d/9XYYMGbJXY0+ePHm3baZOnZqampqUl5entrZ2r+ZhxwYNGlTqEmCPWKsHr1dLXcAByj9PO5+1WhjWKgAAQNdSkIDaI488kp/85CdJkqOOOirvf//792qcoUOH5qabbsqrr775n/G1tbUZO3Zsp9UJAABAx3Xr1i0nnXRSTjnllAwdOjR9+/bNxo0bs2jRovzud7/L0qVLs2TJknz1q1/N17/+9Rx66KGlLhkAAAAAACiRggTUfv7znyd5c5vt//W//ld69OixV+NUVlbmb/7mb/LZz342mzdvzs9//nMBNQAAgBL79Kc/nd69e293/8QTT8z555+f7373u3n44Yfzxhtv5NZbb82nP/3pDs8xderU3baprq5OkrS2tqahoaHDc7CtsrKy9t2o6uvr09bWVuKKYMesVSicurq6UpcAe6QrrNWBAwe2H0cPAABwsOv0gNr8+fOzfPnyJMm4ceP2+jiXLY466qiMGzcuf/jDH7J48eIsXrw4Rx99dCdUCgAAcOCaNGnSPo8xZcqUTJw4cbv7OwqnbVFRUZFPfOITefHFF7Ns2bLMnDkzK1euzIABAzo0d01NTYfaC6h0rra2Np8pXYK1Cp3L9xNdhbUKAADQtZR19oBPPfVU+/UFF1zQKWNuPc7MmTM7ZUwAAAAKo7y8PGeffXb767lz55awGgAAAAAAoJQ6fQe1hQsXJnnzqJVhw4Z1ypjHHnts+vfvnzfeeCMLFizolDEBAAAOZNddd90+j3HIIYfsdd+td9NeuXLlPtcCAAAAAAB0TZ0eUNtyvOfQoUM7ddyjjz46zz77bJYuXdqp4wIAAByIjjjiiFKXAAAAAAAA0PlHfK5fvz7JmzuodaYt461bt65TxwUAAKDzLVmypP16X3ZiAwAAAAAAurZOD6i1tLS8OXBZ5w69Zbwt4wMAALB/am1tzUMPPdT++sQTTyxhNQAAAAAAQCl1ekCtb9++SZI1a9Z06rhbxuvTp0+njgsAAMCemz17dvvO2TvS0tKSf//3f8/SpUuTJO94xzty6KGHFqs8AAAAAABgP1PR2QP269cvq1atyssvv9yp477yyitJkv79+3fquAAAAOy5hx9+ON/61rcyduzYjBw5Mocffnh69eqVxsbGvPTSS3nwwQfbj/fs379/Pvaxj5W4YgAAAAAAoJQ6PaA2bNiwvPzyy3n99dezZMmSDBkyZJ/HXLp0aRoaGtrHBwAAoHQaGxszY8aMzJgxY6dtjjrqqHzqU5/KoEGDilgZAAAAAACwv+n0gNrJJ5+chx56KEnyq1/9Kp/85Cf3ecxf/vKX24wPAABAaVx88cU5+uijM3/+/CxZsiRr1qzJunXr0r179/Tv3z/HHntsTj/99Jx22mkpKysrdbkAAAAAAECJdXpA7ZRTTknv3r2zfv36zJgxI6effnrGjh271+M9/fTT7X+V37t375xyyimdVSoAAAAdNGTIkAwZMiR/9md/VupSAAAAAACALqDTA2o9e/bMhRdemJ/97GfZvHlzvv3tb+fKK6/M6aef3uGxZs6cmRtuuCGbN29Oklx44YXp2bNnZ5cMAAel1iveX+oSdqk1yaulLqKDym++u9QlAAAAAAAAAOxXOj2glrwZJHvsscfyyiuvpLm5Odddd13e+c535sILL8zxxx+/2/7z58/PPffckyeeeKL93lFHHeUv9AEAAAAAAAAAALqQggTUevTokc997nP5whe+kDfeeCNJ8sQTT+SJJ57IoYcemuHDh2fIkCHp3bt3qqqq0tjYmPXr12fJkiVZsGBBGhoathmvf//++dznPpfKyspClAsAAAAAAAAAAEABFCSgliSHHnporr766lx33XV56aWX2u+//vrref311/d4nGOOOSZ/93d/l0MPPbQQZQIAAAAAAAAAAFAgBQuoJcmgQYPyta99LXfddVd+85vfZM2aNXvct2/fvrngggty8cUXp6KioGUCAAAAAAAAAABQAAVPflVUVORDH/pQLrroojz++OOZPXt2XnjhhTQ0NKStra29XVlZWQYOHJgTTjgho0ePzumnn54ePXoUujwAAAAAAAAAAAAKpGhbk/Xo0SPjx4/P+PHj2+9t3LgxGzduTM+ePdOzZ89ilQIAAAAAAAAAAEARlPTsTME0AAAAAAAAAACAA1dZqQsAAAAAAAAAAADgwCSgBgAAAAAAAAAAQEEIqAEAAAAAAAAAAFAQAmoAAAAAAAAAAAAUhIAaAAAAAAAAAAAABSGgBgAAAAAAAAAAQEEIqAEAAAAAAAAAAFAQAmoAAAAAAAAAAAAUhIAaAAAAAAAAAAAABSGgBgAAAAAAAAAAQEEIqAEAAAAAAAAAAFAQAmoAAAAAAAAAAAAUhIAaAAAAAAAAAAAABSGgBgAAAAAAAAAAQEEIqAEAAAAAAAAAAFAQAmoAAAAAAAAAAAAUhIAaAAAAAAAAAAAABSGgBgAAAAAAAAAAQEEIqAEAAAAAAAAAAFAQAmoAAAAAAAAAAAAUhIAaAAAAAAAAAAAABSGgBgAAAAAAAAAAQEEIqAEAAAAAAAAAAFAQFaUuYH/V0NCQ+++/P7NmzcqKFStSUVGR2tranHHGGXnPe96TysrKvR67qakpzzzzTJ577rm89NJLqaurS2NjY3r27JnBgwdnzJgxOf/881NdXd15bwgAAAAAAAAAAKDIBNR24KmnnsoNN9yQjRs3tt9ramrKwoULs3DhwkybNi1XXXVVamtrOzz2yy+/nC9/+ctpbGzc7tm6devy4osv5sUXX8y9996bv/qrv8q73vWufXovAAAAAAAAAAAApSKg9haLFi3K9ddfn+bm5lRVVeWSSy7J6NGj09zcnEceeSTTpk3L8uXL8/Wvfz3f+MY30rNnzw6Nv3HjxvZw2ogRI/KOd7wjw4YNS9++fbNmzZo88cQTmTZtWjZu3Jh//dd/Tc+ePXPKKacU4q0CAAAAAAAAAAAUlIDaW9x6661pbm5OeXl5vvSlL+X4449vfzZ69OgMHjw4P/7xj7N8+fL8+te/zqRJkzo0frdu3XLGGWfkwx/+cIYMGbLd8zFjxuSUU07Jtddem7a2tnz/+9/Pv/7rv6Zbt277/N4AAAAAAAC6qsbGxrz00ktZsGBBFixYkIULF6ahoSFJMnDgwNx44427HaOtrS0vvPBCnnnmmcyfPz9Lly7NunXr0qNHjxx66KE58cQTc95552Xo0KGFfjsAAHDQEFDbyoIFC/L8888nSc4666xtwmlbXHjhhXnooYeydOnS3H///fngBz+Yioo9/xhHjBiRESNG7LLNqaeemtNOOy1PPPFEXnvttSxatCjDhg3r2JsBAAAAAAA4gHzzm9/MnDlz9mmMK6+8MitWrNju/saNG/Pqq6/m1Vdfze9+97tcdNFF+chHPmIDAQAA6AQCaluZOXNm+/VZZ521wzZlZWWZMGFCfvrTn2b9+vWZM2dOxowZ0+m1jBo1Kk888USS5LXXXhNQAwAAAAAADmqbN29uv+7Tp0+OPfbYzJs3L42NjXs8xqpVq5IktbW1eec735kRI0ZkwIABaW5uzuzZs3Pvvfdm/fr1ufvuu1NWVpa/+Iu/6PT3AQAABxsBta3MmzcvSVJZWbnLQNjIkSO36VOIgFpLS0v7dVlZWaePDwAAAAAA0JWMGzcu5557bo477rjU1tYmeXNHtI4E1I477rhceumlGTNmzHa7o51wwgkZN25cvvSlL2XNmjX59a9/nXPOOSeHHXZYp74PAAA42AiobWXJkiVJ3vyrmfLy8p22O/zww7fr09nmzp3bfn3EEUd0uP+Otqd+q+rq6vb32RVCcK2lLuAA1BW+7l2Rtdr5rNXCsFY7n7VaGNZq57NWAQAA6IrOPffcfR7j6quv3uXz2traXHrppfn+97+f1tbWPPnkk7nwwgv3eV4AADiYCaj9X83NzVm7dm2SpKamZpdt+/Tpk8rKyjQ1Ne1REKyjFi9enFmzZiVJjjrqqAwZMqTDY0yePHm3baZOnZqampqUl5e3/6XR/uzVUhdwAOoKX/euyFrtfNZqYVirnc9aLQxrtfNZqwAAALBzo0aNar+uq6srYSUAAHBgsHXC/7X19s9VVVW7bb+lTUe2jd4TmzZtyne/+920tbUlSS677LJOHR8AAAAAAICd27RpU/u1XcgBAGDf2UHt/2pubm6/rqjY/ceypc3W/TrD9773vSxcuDBJMmHChIwdO3avxpk6depu21RXVydJWltb09DQsFfz0LX5yy+6CmuVrsJapavoKmt14MCB7UfSAwAAQLHMnTu3/XpvTrkBAAC2JaD2f/Xo0aP9uqWlZbftt7TZut+++uUvf5nf//73SZJjjz02H//4x/d6rN0dU/pWW3Zs4+Di605XYa3SVVirdBXWKgAAAOxYU1NT7rvvviRJ9+7d92ojgRUrVuy2TXV1dfsfZdmlrXNs/Tn6TNmfWaskSWupCzgA+X46OPmZ2nUIqP1fWx/ruSfHdm5psyfHge6J3/3ud7n99tuTJEcccUSuuuqqThsbAAAAAACA3fvJT36S119/PUnynve8JwMGDOjwGJMnT95tm6lTp6ampibl5eWpra3t8Bzs2qBBg0pdAuwRa/Xg9WqpCzgA+ecpfqbu38QH/68ePXqkb9++SXb/ly3r1q1LU1NTko7vVLYjM2bMyC233JLkzWOMvvSlL6Vfv377PC4AAAAAAAB75g9/+EN+85vfJHlzM4HLLrusxBUBAMCBwQ5qWxkyZEief/751NXVpbW1tX1r5bdatmzZNn32xVNPPZUbb7wxmzdvziGHHJIvf/nLnRJ6AwAAAAAAKLZJkybt8xhTpkzJxIkT972YDpgzZ07+/d//PUnSp0+f/P3f/3169OixV2NNnTp1t22qq6uTJK2trWloaNiredhWWVlZ+84p9fX1aWtrK3FFsGPWKhRGXV1dqUugBPxMLZyBAwfuNDe1NwTUtjJixIg8//zzaWpqyksvvZThw4fvsN3cuXO36bO3/vSnP+W6665La2tr+vbtmy996Uu2nQQAAAAAACiihQsX5lvf+lY2bdqUqqqqXHXVVfu0QUFHNyLwi9TO19bW5nOlS7BWofP4XsLP1P2bgNpWTjvttPzqV79Kkjz00EM7DKi1tbXl4YcfTpL07t07o0aN2qu55s2b1/4fO7169coXv/jFHHnkkXtdOwAAAAAAQKldd911+zzGIYcc0gmV7JlXX301//zP/5yNGzeme/fu+cxnPrPTDQwAAIC9I6C2leOOOy4nnnhinn/++Tz00EOZOHFijj/++G3a3HPPPVm6dGmS5IILLkhFxbYf4Zw5c/LVr341STJhwoRceeWV282zePHifOMb30hTU1MqKyvz+c9/PsOGDSvQuwIAAAAAACiOI444otQl7LG6urpcffXVWbt2bcrLy/OpT30qJ510UqnLAgCAA46A2lt89KMfzZe//OU0Nzfn6quvzgc+8IGMGjUqzc3NefTRR/Pggw8mSQYPHpyLLrqow+PX1dXln/7pn7J+/fokyWWXXZZevXrllVde2Wmf/v37p3///nv3hgAAAAAAANjGihUr8rWvfS2rVq1Kt27dcuWVV+bUU08tdVkAAHBAElB7i2OOOSaf+tSncsMNN2Tjxo25/fbbt2szePDgXHXVVenZs2eHx3/hhRfyxhtvtL++7bbbdtvn0ksvzaRJkzo8FwAAAAAAANt644038rWvfS0NDQ1JkiuuuCLjxo0rcVUAAHDgElDbgbFjx+baa6/Nfffdl1mzZmXlypWpqKhIbW1tTj/99Lz3ve9NZWVlqcsEAAAAAACgA9avX59/+qd/yrJly5Ikl19+ec4999wSVwUAAAc2AbWdGDhwYC6//PJcfvnlHeo3atSo3HnnnTt9PnHixEycOHEfqwMAAAAAADi41NXV5YUXXtjmXmNjY/v/Tp8+fZtnb3vb21JdXd3+etOmTfnGN76RxYsXJ0nGjRuXk046Ka+88spO56yqqsqgQYM6pX4AADhYCagBAAAAAACw33vhhRfyne98Z4fP1q5du92zr3zlK9sE1FatWpV58+a1v54xY0ZmzJixyzlHjhyZf/iHf9jrmgEAgKSs1AUAAAAAAAAAAABwYLKDGgAAAAAAAPu9iRMnZuLEiXvdf9CgQbnzzjs7ryAAAGCP2EENAAAAAAAAAACAghBQAwAAAAAAAAAAoCAE1AAAAAAAAAAAACgIATUAAAAAAAAAAAAKQkANAAAAAAAAAACAghBQAwAAAAAAAAAAoCAE1AAAAAAAAAAAACgIATUAAAAAAAAAAAAKQkANAAAAAAAAAACAghBQAwAAAAAAAAAAoCAE1AAAAAAAAAAAACgIATUAAAAAAAAAAAAKQkANAAAAAAAAAACAghBQAwAAAAAAAAAAoCAE1AAAAAAAAAAAACgIATUAAAAAAAAAAAAKQkANAAAAAAAAAACAghBQAwAAAAAAAAAAoCAE1AAAAAAAAAAAACgIATUAAAAAAAAAAAAKQkANAAAAAAAAAACAghBQAwAAAAAAAAAAoCAE1AAAAAAAAAAAACiIilIXAAAAQNfV2NiY6dOnZ+bMmVm6dGnWrl2b3r17Z8CAARkxYkTe8Y53ZMyYMaUuEwAAAAAAKBEBNQAAAPbK7NmzM3Xq1DQ0NGxz/4033sgbb7yRRYsW5fnnnxdQAwAAAACAg5iAGgAAAB323HPP5Zvf/GY2bdqU3r1757zzzsvIkSPTv3//NDU1ZenSpXn66afzxhtvlLpUAAAAAACghATUAAAA6JA1a9bk29/+djZt2pSjjz46X/jCF1JdXb1NmxNOOCHnnHNOWlpaSlMkAAAAAACwXygrdQEAAAB0LT/96U+zdu3aVFZW5jOf+cx24bStVVT4uygAAAAAADiYCagBAACwx9atW5cZM2YkSd797ndn4MCBJa4IAAAAAADYnwmoAQAAsMdmzZqV5ubmJMnYsWPb7zc1NaWuri6rV6/O5s2bS1UeAAAAAACwn3HWCgAAAHts/vz57ddHHXVUFixYkDvuuCN/+tOf2oNp/fr1yxlnnJEPfehDuzz+c1dWrFix2zbV1dUpLy9PkpSV+furfbX1Z+jzZH9mrZIkraUu4ADle6rzWauFYa0CAAB0LQJqAAAA7LGlS5e2X8+ePTvf/e5309q67a9e16xZkwceeCBPPPFEvvCFL+Too4/u8DyTJ0/ebZupU6empqYm5eXlqa2t7fAc7NygQYNKXQLsEWv14PVqqQs4QPnnaeezVgvDWgUAAOhaBNQAAADYY+vWrWu/vvnmm5Mkl112WcaPH5/q6urU1dXl7rvvzvTp07N69epcc801ueaaa9KrV69SlQwAAAAAAJSQgBoAAAB7rLGxsf1606ZN+eQnP5nx48e33xsyZEimTJmSioqKPPjgg2loaMhvf/vbXHLJJR2aZ+rUqbtts+X40NbW1jQ0NHRofLZXVlbWvhtVfX192traSlwR7Ji1CoVTV1dX6hJgj3SFtTpw4MD24+gBAAAOdgJqAAAAB6BJkybt8xhTpkzJxIkTt7nXo0eP9uuhQ4duE07b2p//+Z/n4YcfzqZNm/LYY491OKBWU1PTofYCKp2rra3NZ0qXYK1C5/L9RFdhrQIAAHQtZaUuAAAAgK6jqqqq/frkk0/eabu+fftm2LBhSZLFixenpaWl4LUBAAAAAAD7HzuoAQAA/z97dx5gdX3f//41w7AoI7KJgEpQkQgiUYKIBgWNRqXRxGjU3HuzNl2ISdvbJmlz08SYpYlp0rR1S+KvSZqahEbTJnFXUHHFBTAuiGwiICKbbLIMMHP/oExFthmYM2e+Zx6Pf5w55/M95w18nZknfM73UIF+8IMfHPBj9OjRY5fbevXqlTlz5jR+vDc77m9oaMj69esb35ITAAAAAABoP2xQAwAAqEBHHHFESR73qKOOytSpU5Ps+62V3np/dbULeAMAAAAAQHvkXwgAAABosiFDhjR+vGzZsr2uff3115MkHTt2TG1tbUnnAgAAAAAA2iYb1AAAAGiyoUOHplu3bkmSadOm7fEqasuWLcuCBQuSJMcff7wrqAEAAAAAQDvlXwgAAABosurq6lx44YVJkuXLl+fWW2/dZc22bdvyf/7P/0lDQ0OS5Nxzz23VGQEAAAAAgLajptwDAAAAUCwXXHBBHnvssbz88su59dZbs2TJkowbNy7dunXL66+/njvuuCOzZ89Okpx88sk59dRTyzwxAAAAAABQLjaoAQAA0CydOnXK3/3d3+Waa67J/Pnz89hjj+Wxxx7bZd3JJ5+cv/qrv0pVVVUZpgQAAAAAANoCG9QAAABoth49euRb3/pW7r///jz66KNZvHhx3nzzzRxyyCEZNGhQxo0bl1GjRpV7TAAAAAAAoMxsUAMAAGC/dOjQIeeee27OPffcco8CAAAAAAC0UdXlHgAAAAAAAAAAAIDKZIMaAAAAAAAAAAAAJWGDGgAAAAAAAAAAACVhgxoAAAAAAAAAAAAlYYMaAAAAAAAAAAAAJWGDGgAAAAAAAAAAACVhgxoAAAAAAAAAAAAlYYMaAAAAAAAAAAAAJWGDGgAAAAAAAAAAACVhgxoAAAAAAAAAAAAlYYMaAAAAAAAAAAAAJWGDGgAAAAAAAAAAACVhgxoAAAAAAAAAAAAlYYMaAAAAAAAAAAAAJWGDGgAAAAAAAAAAACVhgxoAAAAAAAAAAAAlYYMaAAAAAAAAAAAAJWGDGgAAAAAAAAAAACVhgxoAAAAAAAAAAAAlYYMaAAAAAAAAAAAAJWGDGgAAAAAAAAAAACVhgxoAAAAAAAAAAAAlYYMaAAAAAAAAAAAAJWGDGgAAAAAAAAAAACVhgxoAAAAAAAAAAAAlYYMaAAAAAAAAAAAAJWGDGgAAAAAAAAAAACVRU+4BAAAAAAAAYF82bdqU+fPnZ+7cuZk7d27mzZuX5cuXJ0kOO+ywXH/99Qf0+D/4wQ/y+OOPN35+3XXXpU+fPgf0mAAAgA1qAAAAAABQEh1u+n25R9in6urq9O3bN0mydOnS1NfXl3ki2LNrrrkmL7zwQkkee9q0aTttTgMAAFqOt/gEAAAAAACgzWtoaGj8uLa2Nu9617vSpUuXA37cTZs25d/+7d+SJIceeugBPx4AALAzV1ADAAAAAACgzRszZkzOOeecDBo0qPHKf1deeWU2bdp0QI87ceLErFixIieeeGJ69uyZKVOmtMS4AADA/7BBDQAAAAAAgDbvnHPOafHHnDdvXu6666507Ngxf/zHf5z//u//bvHnAACA9s5bfAIAAAAAANDubNu2LT/60Y/S0NCQD3zgA+nfv3+5RwIAgIpkgxoAAAAAAADtzu23354FCxakX79+ufjii8s9DgAAVCwb1AAAAAAAAGhXli1blltvvTVJ8sd//Mfp2LFjmScCAIDKVVPuAdqq5cuX56677sr06dOzcuXK1NTUpG/fvjnttNNy3nnnpXPnzvv92PX19VmyZEnmzp2buXPnZt68eXnllVeydevWJMlVV12VE044oaV+KQAAAAAAALzFTTfdlM2bN+c973lPhg8f3qKPvXLlyn2u6d69ezp06JAkqa52PYmW8NbfR7+ntGXOVZJkW7kHqED+f2qffE0tDhvUduPpp5/Otddem40bNzbetnnz5sybNy/z5s3L5MmT86UvfSl9+/bdr8d/6KGHcsMNN7TUuAAAAAAAADTRQw89lD/84Q85+OCD8/GPf7zFH3/ChAn7XHPjjTemV69e6dChw37/exN71qdPn3KPAE3iXG2/FpV7gArk+ym+prZtNqi9zcsvv5x//ud/Tl1dXbp06ZIPfvCDGTZsWOrq6vLoo49m8uTJee211/Ltb3873/nOd3LQQQcd0PN16NAhAwYMyLZt27Jw4cIW+lUAAAAAAADwduvWrcvPf/7zJMlHPvKRdO/evbwDAQBAO2CD2tv87Gc/S11dXTp06JC///u/z+DBgxvvGzZsWPr165ebb745r732Wm677bZcdtllzX6OI488Mp/85Cdz7LHHZuDAgenUqVN+/etf26AGAAAAAAAU2v78u8nbfeYzn8m4ceMOfJjd+PnPf561a9dm0KBBOffcc0vyHDfeeOM+1+zYGLdt27YsX768JHO0N9XV1Y1XTlm2bFnq6+vLPBHsnnMVSmPp0qXlHoEy8DW1dA477LDGt6RvCTaovcXcuXPz4osvJknOOuusnTan7fD+978/DzzwQF599dXcdddd+dCHPpSamub9Ng4aNCiDBg1qkZkBAAAAAADYt+effz5TpkxJdXV1/uRP/iTV1dUleZ5evXo1a71/SG159fX1fl8pBOcqtBz/L+Frattmg9pbPPnkk40fn3XWWbtdU11dnbFjx+aXv/xl3nzzzbzwwgt517ve1VojAgAAAAAAtFk/+MEPDvgxevTo0QKT7Op3v/tdkuTYY4/NkiVLsmTJkl3WLFu2rPHjadOmpVu3bkmS97znPSWZCQAA2gMb1N7ipZdeSpJ07tw5xxxzzB7XDR06dKdjbFADAAAAAABIjjjiiHKPsEdbtmxJksyZMyf/8i//ss/1P/3pTxs/tkENAAD2nw1qb7F48eIkSd++fff6Pqr9+/ff5Zi2ZuXKlftc071798ZfZ6kuY92StpV7gApUhD/3InKutjznamk4V1uec7U0nKstz7kKAAAAAABAa7FB7X/U1dVl3bp1SZJevXrtdW1tbW06d+6czZs3N2kjWDlMmDBhn2tuvPHG9OrVKx06dEjfvn1bYaoDs6jcA1SgIvy5F5FzteU5V0vDudrynKul4Vxtec5VAAAA2qOvfe1r+1xz/fXXZ8qUKUmS6667Ln369CnxVAAAUPlcOuF/bNq0qfHjLl267HP9jjVvPQ4AAAAAAAAAAID/5Qpq/6Ourq7x45qaff+27Fjz1uPakhtvvHGfa7p3754k2bZtW5YvX17iiWiLli5dWu4RoEmcqxSFc5WiKMq5ethhhzW+JT0AAAAsXbo0s2bN2um2HRcS2LRpUx588MGd7jvppJMa/y0EAAAoHxvU/kenTp0aP966des+1+9Y89bj2pJ9vU3p29XX15doEtoyf+4UhXOVonCuUhTOVQAAAIpo1qxZueGGG3Z737p163a576qrrrJBDQAA2gBv8fk/3vq2nk15284da5rydqAAAAAAAAAAAADtkSuo/Y9OnTrlkEMOybp167Jy5cq9rl2/fn02b96cpPlXKgMAAAAAAKD5xo0bl3HjxpX0Oa688spceeWVJX0OAABob1xB7S2OPPLIJMnSpUuzbdu2Pa5bsmTJLscAAAAAAAAAAACwMxvU3uKd73xnkmTz5s2ZP3/+HtfNnDlzl2MAAAAAAAAAAADYmQ1qbzFq1KjGjx944IHdrqmvr8+UKVOSJF27ds0JJ5zQKrMBAAAAAAAAAAAUjQ1qbzFo0KAMGTIkyfYNarNnz95lze23355XX301SXLBBRekpqZmp/tfeOGFXHbZZbnsssty/fXXl35oAAAAAAAAAACANqpm30val0984hP5yle+krq6unzzm9/MxRdfnBNOOCF1dXV57LHHMmnSpCRJv379cuGFF+738zz44IM7fb5gwYLGj5955pksX7688fO+ffvm+OOP3+/nAgAAAAAAAAAAKAcb1N7m6KOPzl/91V/l2muvzcaNG/OrX/1qlzX9+vXLl770pRx00EH7/Tw33HDDHu/73e9+t9PnY8eOtUENAAAAAAAAAAAoHBvUdmPkyJH53ve+lzvvvDPTp0/PqlWrUlNTk759+2b06NE5//zz07lz53KPCQAAAAAAAAAA0KbZoLYHhx12WD7+8Y/n4x//eLOOO+GEE/LrX/96n+uasgYAAAAAAAAAAKDIqss9AAAAAAAAAAAAAJXJBjUAAAAAAAAAAABKwgY1AAAAAAAAAAAASsIGNQAAAAAAAAAAAErCBjUAAAAAAAAAAABKwgY1AAAAAAAAAAAASsIGNQAAAAAAAAAAAErCBjUAAAAAAAAAAABKwgY1AAAAAAAAAAAASsIGNQAAAAAAAAAAAErCBjUAAAAAAAAAAABKwgY1AAAAAAAAAAAASsIGNQAAAAAAAAAAAErCBjUAAAAAAAAAAABKwgY1AAAAAAAAAAAASsIGNQAAAAAAAAAAAErCBjUAAAAAAAAAAABKwgY1AAAAAAAAAAAASsIGNQAAAAAAAAAAAErCBjUAAAAAAAAAAABKwgY1AAAAAAAAAAAASsIGNQAAAAAAAAAAAErCBjUAAAAAAAAAAABKoqbcAwAAAFAcv/71r3Prrbc265hLL700l112WYkmAgAAAAAA2jJXUAMAAKCk+vfvX+4RAAAAAACAMnEFNQAAAJrsvPPOy+jRo/e6pr6+PldddVU2btyYgw46KKNGjWql6QAAAAAAgLbGBjUAAACa7NBDD82hhx661zUzZszIxo0bkySnnXZaOnXq1BqjAQAAAAAAbZC3+AQAAKBFTZkypfHjM888s4yTAAAAAAAA5WaDGgAAAC1mw4YNefrpp5Mkffr0yZAhQ8o8EQAAAAAAUE42qAEAANBipk6dmrq6uiTbr55WVVVV5okAAAAAAIByqin3AAAAAFSOlnp7z5UrV+5zTffu3dOhQ4ckSXW1118dqLf+Hvr9pC1zrpIk28o9QIXy/1T75OsqAAAApWaDGgAAAC1i2bJlmTVrVpLkne98Z/r27bvfjzVhwoR9rrnxxhvTq1evdOjQ4YCei1316dOn3CNAkzhX269F5R6gQvl+iq+rAAAAlIKXQwEAANAiHnrooTQ0NCRJxo4dW+ZpAAAAAACAtsAV1AAAAGgRDz/8cJKkY8eOOf300w/osW688cZ9runevXuSZNu2bVm+fPkBPR/b39Jrx1VTli1blvr6+jJPBLvnXIXSWbp0ablHoAx8XS2Nww47rPHt6AEAANo7G9QAAAAq0GWXXXbAj/GZz3wm48aNa9La2bNn57XXXkuSnHLKKTn44IMP6Ll79erVrPX+IbVl1dfX+z2lEJyr0LL8/4SvqwAAAJSCt/gEAADggD300EONH5955pllnAQAAAAAAGhLXEENAACgAv3gBz844Mfo0aNHk9Zt3bo1jz32WJLk0EMPzUknnXTAzw0AAAAAAFQGG9QAAAAq0BFHHNFqzzVt2rSsX78+SXLGGWekutrFugEAAAAAgO38qwEAAAAHZMqUKY0fe3tPAAAAAADgrWxQAwAAYL+tW7cuM2bMSJK84x3vyMCBA8s7EAAAAAAA0KbYoAYAAMB+e/TRR7Nt27YkydixY8s8DQAAAAAA0NbYoAYAAMB+2/H2nh06dMiYMWPKPA0AAAAAANDW2KAGAADAfnn11Vczb968JMnw4cPTvXv38g4EAAAAAAC0OTaoAQAAsF8eeuihxo+9vScAAAAAALA7NeUeAAAAgGL6yEc+ko985CPlHgMAAAAAAGjDXEENAAAAAAAAAACAkrBBDQAAAAAAAAAAgJKwQQ0AAAAAAAAAAICSsEENAAAAAAAAAACAkrBBDQAAAAAAAAAAgJKwQQ0AAAAAAAAAAICSsEENAAAAAAAAAACAkrBBDQAAAAAAAAAAgJKwQQ0AAAAAAAAAAICSsEENAAAAAAAAAACAkqgp9wAAAAAAAM3R4abfl3uEfaqurk7fvn2TJEuXLk19fX2ZJwIAANqKtt40egZoaa6gBgAAAAAAAAAAQEnYoAYAAAAAAAAAAEBJ2KAGAAAAAAAAAABASdigBgAAAAAAAAAAQEnYoAYAAAAAAAAAAEBJ2KAGAAAAAAAAAABASdigBgAAAAAAAAAAQEnYoAYAAAAAAAAAAEBJ1JR7AAAAAAAAANiXTZs2Zf78+Zk7d27mzp2befPmZfny5UmSww47LNdff32zH3Px4sV54IEH8oc//CErV65MXV1dunfvnr59++aEE07ImDFj0qdPn5b+pQAAQLtigxoAAAAAAABt3jXXXJMXXnihRR6roaEhEydOzO9///ts27Ztp/uWL1+e5cuX57nnnkvnzp3zR3/0Ry3ynAAA0F7ZoAYAAAAAAECb19DQ0PhxbW1tjj322Lz00kvZtGlTsx/rRz/6Ue6///4kyTHHHJOzzjorAwYMSJcuXbJmzZrMnTs3TzzxRKqqqlpsfgAAaK9sUAMAAAAAAKDNGzNmTM4555wMGjQoffv2TZJceeWVzd6gdv/99zduTrv44otzxRVX7LIR7aSTTsqll16arVu3tszwAADQjtmgBgAAAAAAQJt3zjnnHPBjbNy4Mf/xH/+RJBkxYkQ+8pGP7HV9TY1/SgMAgANVXe4BAAAAAAAAoDU8/PDDefPNN5MkH/rQh8o8DQAAtA9e9gEAAAAAAEC7MHXq1CTJIYccksGDBzfevmbNmmzcuDHdunXLwQcfXK7xAACgItmgBgAAAAAAQMWrr6/PvHnzkiQDBgxIQ0ND7r777txxxx1ZtmxZ47p3vOMdueCCCzJu3LhUV3szIgAAOFA2qAEAAAAAAFDxVq5cmY0bNyZJamtr8/3vfz9PPvnkLuteeeWV/PCHP8zTTz+dv/7rv05NTfP+OW3lypX7XNO9e/d06NAhSWyCayFv/X30e0pb5lylCJynFIVztThsUAMAAAAAAKDirV+/vvHj6dOnZ8uWLenXr18++tGP5oQTTkhVVVVmzpyZ//iP/8irr76ap59+Or/4xS/y8Y9/vFnPM2HChH2uufHGG9OrV6906NAhffv2bfavhb3r06dPuUeAJnGuUgTOU4rCudq22T4IAAAAAABAxdu8eXPjx1u2bEn37t3zjW98IyNHjsxBBx2ULl26ZMSIEbn66qvTo0ePJMndd9/dpCuiAQAAe+YKagAAAAAAALSIyy677IAf4zOf+UzGjRt34MO8TceOHXf6/KKLLkq3bt12WdetW7dcfPHF+clPfpJt27bliSeeyPjx45v8PDfeeOM+13Tv3j1Jsm3btixfvrzJj82eVVdXN145ZdmyZamvry/zRLB7zlWKwHlKUThXS+ewww5rfEv6lmCDGgAAAAAAABXvoIMO2unzd73rXXtce9JJJzV+PG/evGY9T69evZq13j+ktrz6+nq/rxSCc5UicJ5SFM7Vts0GNQAAAAAAAFrED37wgwN+jB1vr9nSevbsmaqqqjQ0NCTZ+0ayt963du3akswDAADthQ1qAAAAAAAAtIgjjjii3CPsUZcuXdK7d+/Gt9Tc2xU23npfS761EQAAtEfV5R4AAAAAAAAAWsOQIUMaP162bNke173++uuNH/fs2bOkMwEAQKWzQQ0AAAAAAIB2YfTo0Y0fP/nkk3tc98QTTzR+fPzxx5d0JgAAqHQ2qAEAAAAAANAujBgxIkcddVSS5I477siiRYt2WbN48eLcdtttSZJu3brl1FNPbdUZAQCg0tSUe4C2avny5bnrrrsyffr0rFy5MjU1Nenbt29OO+20nHfeeencuXOLPM+MGTMyadKkzJs3L2vXrk23bt1y7LHH5pxzzsnJJ5/cIs8BAAAAAABQdEuXLs2sWbN2um3Tpk2N/33wwQd3uu+kk05K9+7dd7qturo6f/Inf5Kvf/3r2bx5c7761a/moosuygknnJAkefHFF/Pb3/628XE/9alPtdi/CQEAQHtlg9puPP3007n22muzcePGxts2b96cefPmZd68eZk8eXK+9KUvpW/fvvv9HPX19fnxj3+c+++/f6fbV61alVWrVuWpp57K2WefnT/90z9NdbUL3QEAAAAAAO3brFmzcsMNN+z2vnXr1u1y31VXXbXLBrVk+1t2/sVf/EVuvPHGvPnmm/nVr361y5oOHTrkk5/8ZE4//fQWmR0AANozG9Te5uWXX84///M/p66uLl26dMkHP/jBDBs2LHV1dXn00UczefLkvPbaa/n2t7+d73znOznooIP263kmTpzYuDnt6KOPzkUXXZTDDz88r7/+en7/+9/n5Zdfzv33359u3brl//q//q+W/CUCAAAAAAC0a6NHj86gQYN2ejedhoaG9OrVKyeeeGL+6I/+6IAuVAAAAPwvG9Te5mc/+1nq6urSoUOH/P3f/30GDx7ceN+wYcPSr1+/3HzzzXnttddy22235bLLLmv2cyxZsiS33XZbkuTYY4/N1VdfnU6dOiVJBg0alJEjR+ZrX/ta5s2bl9tuuy1nn322CAIAAAAAANq1cePGZdy4cS32eL17985HP/rRfPSjH22xxwQAAHblvSPfYu7cuXnxxReTJGedddZOm9N2eP/7358jjjgiSXLXXXdl69atzX6eO++8M9u2bUuSfPKTn2zcnLZD586d88lPfjJJsm3bttx+++3Nfg4AAAAAAAAAAIBys0HtLZ588snGj88666zdrqmurs7YsWOTJG+++WZeeOGFZj1HQ0NDnnrqqSTJEUccsdtNcEkyePDg9O/fP0ny9NNPp6GhoVnPAwAAAAAAAAAAUG42qL3FSy+9lGT7FcyOOeaYPa4bOnToLsc01bJly/LGG28kSYYMGbLXtTueZ9WqVVm+fHmzngcAAAAAAAAAAKDcaso9QFuyePHiJEnfvn3ToUOHPa7bcWWztx7T3OdI0vhWoU19nj59+jT5eVauXLnPNd27d2/8dVZXt/29itvKPUAFKsKfexE5V1uec7U0nKstz7laGs7VludcBQAAAAAAoLXYoPY/6urqsm7duiRJr1699rq2trY2nTt3zubNm5u0Eeyt3rp+X8/Tu3fv3R7XFBMmTNjnml/+8pdJkg4dOqRv377Nevxy2Prvd5R7hIpT0/vwco9QkZyrLc+5WhrO1ZbnXC0N52rLc65Saaqrq3P44c7rlnTYYYeVewRoEucqReFcpSicqy3HC4NoKj1TGr6eURTOVYrAeUpROFdbVks3jQ1q/2PTpk2NH3fp0mWf67t06ZLNmzfvdFxLP0/nzp13e1xLqaqqavHHLCX/kEpROFcpCucqReFcBfalqqpqr1fBpvn8flIUzlWKwrlKUThXofXpmdLwe0pROFcpAucpReFcbdtsUPsfdXV1jR/X1Oz7t2XHmrce19LP07Fjx90e1xQ33njjPtd4BVfL2rZtW1avXp1k57dPhbbGuUpROFcpCucqUCl8PaMonKsUhXOVonCuApXC1zOKwrlKEThPKQrnanHYoPY/OnXq1Pjx1q1b97l+x5q3HtfSz7Nly5bdHtcU+3r7UFre6tWrG99a9cYbb/RnQJvlXKUonKsUhXMVqBS+nlEUzlWKwrlKUThXgUrh6xlF4VylCJynFIVztThcQut/vPXtNpvydpo71jTl7UD393k2b9682+MAAAAAAAAAAACKwAa1/9GpU6cccsghSZKVK1fude369esbN481d/flW9fv63lWrFix2+MAAAAAAAAAAACKwAa1tzjyyCOTJEuXLs22bdv2uG7JkiW7HNPc50iSV199da9rD+R5AAAAAAAAAAAAys0Gtbd45zvfmWT7W2vOnz9/j+tmzpy5yzFN1adPn/To0SNJ8uKLL+517Y77e/bsmcMOO6xZzwMAAAAAAAAAAFBuNqi9xahRoxo/fuCBB3a7pr6+PlOmTEmSdO3aNSeccEKznqOqqiqnnHJKku1XUJs9e/Zu182ePbvxCmsjR45MVVVVs54HAAAAAAAAAACg3GxQe4tBgwZlyJAhSbZvUNvd5rHbb7+9cePYBRdckJqamp3uf+GFF3LZZZflsssuy/XXX7/b5xk/fnyqq7f/1v/0pz9NXV3dTvfX1dXlpz/9aZKkQ4cO+aM/+qMD+4UBAAAAAAAAAACUgQ1qb/OJT3winTp1yrZt2/LNb34z//3f/53Zs2fn+eefz49//OPcfPPNSZJ+/frlwgsv3K/n6N+/fy666KIkybx58/KVr3wljz32WObNm5fHHnssX/nKVzJv3rwkyYUXXph+/fq1zC8OAAAAAAAAAACgFVU1NDQ0lHuItubpp5/Otddem40bN+72/n79+uVLX/pS+vbtu8t9L7zwQq6++uokydixY3PllVfu9jHq6+vzox/9aI9vJZokZ599dv70T/+08WprAAAAAAAAAAAARVKz7yXtz8iRI/O9730vd955Z6ZPn55Vq1alpqYmffv2zejRo3P++eenc+fOB/Qc1dXVmTBhQk499dRMmjQp8+bNy7p163LIIYfk2GOPzbnnnpuTTz65hX5FAAAAAAAAAAAArc8V1AAAAAAAAAAAACgJ7x0JAAAAAAAAAABASdigBgAAAAAAAAAAQEnYoAYAAAAAAAAAAEBJ2KAGAAAAAAAAAABASdigBgAAAAAAAAAAQEnYoAYAAAAAAAAAAEBJ2KAGAAAAAAAAAABASdigBgAAAAAAAAAAQEnYoAYAAAAAAAAAAEBJ1JR7AAAAaOtuuOGGVFVV5YorrkiPHj2adMzatWtz8803p6qqKhMmTCjxhAAAAHumaQAAgKLSM5XBBjXYjZkzZ5bkcYcOHVqSx4W9WbBgQWbNmpXXX389GzduTH19/V7X+yYNsKspU6YkSS688MImx8+GDRsaj/N1FWhtmoZKomkADpymAYpG01BJNA3AgdEzlcEGNdiNq6++usUfs6qqKhMnTmzxx4U9WbJkSW688cbMnj272cf6Jk1r27p1ax5++OE89dRTeeWVV7J27drU1dXt9RhfVwFgzzQNlUDTUCSaBgBalqahEmgaikLPAK3BBjVoJQ0NDeUegXZk1apVueqqq7J27drG27p06ZKuXbumqqqqjJPBrpYsWZJ//Md/zJIlS5p1nK+rtHVbtmxJknTs2LHMkwC0DN97aU2ahiLRNFQqTQNUGt97aU2ahqLQM1QqPdP22KAGu3HVVVft8b6tW7dm4sSJmTdvXrp165bTTjstgwYNyqGHHpokWbNmTebOnZvHH388a9euzbHHHpsrrrgiNTX+d6P1/Nd//Vdj9Jx99tm58MIL079//zJPBbvatGlTvv3tb2fZsmWpqqrKyJEj061bt0yePDlJcskll2T9+vWZN29e5s6dmyQZPHhwhg8fXs6xoUleeumlJGn8GQGgNWkaik7TUBSahkqmaYBy0jQUnaahCPQMlUzPtD1+EoPdGDp06G5vb2hoyLe//e3MmzcvZ511Vj7xiU+kS5cuu6w788wz83//3/93fvazn+X+++/PHXfckS996UulHhsaPfPMM0mSsWPH5s/+7M/KOwzsxX333Zdly5aluro6X/7ylzNs2LAsWrSoMX4uu+yyxrUvv/xyrrvuusyZMyfvec97cv7555drbNqBW2+9dbe333PPPfuMmS1btuT111/P008/nSR55zvf2eLzAeyLpqHoNA1FoWloqzQNUHSahqLTNBSBnqGt0jOVyQY1aIb7778/f/jDHzJ8+PD8+Z//+V7Xdu7cOX/2Z3+WFStW5JlnnsmkSZNyzjnntNKktHdvvPFGku0RDm3ZtGnTkiSnnXZahg0btte1Rx99dK666qp84QtfyL//+79n8ODBOeaYY1pjTNqhW265Zbe333vvvc16nI4dO+aiiy5qiZEAWoSmoSg0DUWhaWirNA1QqTQNRaFpKAI9Q1ulZypTdbkHgCJ58MEHkyTve9/7mnzMeeedlySZMmVKKUaC3eratetO/4W2avHixUmSUaNG7fb++vr6nT7v1q1b/uiP/ij19fW5++67Sz4f7I+OHTumT58+GTNmTL75zW9m4MCB5R4JoJGmoSg0DUWhaahEmgZoyzQNRaFpKAI9QyXSM22XK6hBMyxZsiRJ0rt37yYf06tXryTJq6++WpKZYHeOOeaYzJgxI6+99lqOPvroco8De/Tmm28m2fnraseOHRs/3rx5cw466KCdjjn++OOTJDNnzmyFCWmv/vM//3Onzy+//PIkyfe///0ceeSR5RgJoEVoGopC01AUmoa2StMAlUrTUBSahiLQM7RVeqYyuYIaNENdXV2SZOXKlU0+ZsfaLVu2lGQm2J3x48cnSSZNmlTmSWDvOnfunCSpqqpqvO3ggw9u/HjFihV7PHb16tUlmwvernfv3undu3dqary+Ayg2TUNRaBqKQtNQFJoGqBSahqLQNBSBnqEo9ExlsEENmqFv375Jkvvuu6/Jx+xYu+NYaA3Dhw/PBz7wgbzwwgu56aabsnXr1nKPBLvVp0+fJMkbb7zReFu3bt1SW1ubJHnppZd2OWb+/PlJ4odQWtWVV16ZK6+8Mg0NDeUeBeCAaBqKQtNQFJqGotA0QKXQNBSFpqEI9AxFoWcqg68a0AynnXZaFi5cmGeeeSb/5//8n3zsYx9Lp06ddrt2y5Yt+fnPf55nnnkmSXL66ae34qS0d1OmTMkRRxyRwYMHZ9KkSZk2bVpGjx6d/v37N74aYm/Gjh3bClPC9sucv/LKK5k3b15GjhzZePuwYcMyderU/P73v8/o0aMbY+j111/Pb3/72yTxnvG0qquvvjpVVVX58z//8/Tr16/c4wDsN01DUWgaikLTUBSaBqgUmoai0DQUgZ6hKPRMZbBBDZrh/e9/fx5++OEsWbIk9913X5566qmcdtppOfbYY3PooYcmSdasWZN58+bl8ccfb7y0af/+/fP+97+/jJPT3txwww07ff7GG2/krrvuatKxVVVVwodWM3z48DzwwAN5+umnG98/PkkuuOCCTJ06Na+//nr+8i//MieccEI2b96cWbNmZdOmTUmSc845p1xj0w516dIlmzZtyoABA8o9CsAB0TQUhaahKDQNRaFpgEqhaSgKTUMR6BmKQs9UBhvUoBk6deqUq666Kt/5znfy8ssvZ/Xq1fv8YXLgwIH5u7/7u3Ts2LGVpoQD49KotKZ3v/vdGTJkSOrr67N06dLGy+wff/zxueSSS/Kb3/wm69evzxNPPLHTcWeddVbGjBlTjpFpp3r37p3Fixdn8+bN5R4F4IBoGtoDTUNr0jQUhaYBKoWmoT3QNLQWPUNR6JnKUNXgOxw0W319fe69997cd999Wbx48W7XUO5PLAAA5eVJREFUHHHEEXnf+96X973vfamurm7lCWnvli9ffkDHH3bYYS00CRyY5557LpMnT87ixYuzbdu29OvXL2eeeWZGjx5d7tFoZ26++ebcdtttueSSS3LZZZeVexyAA6ZpaOs0DZVC09BWaBqg0mga2jpNQyXQM7QVeqYy2KAGB2j16tVZuHBh1q9fnyTp2rVrBgwYkB49epR5MgCgpaxevTp/8zd/k61bt+Yb3/iGy0gDFUXTAEDl0zRAJdM0AFDZ9ExlsEENAACaYM6cOfn+97+fjRs35gMf+EDGjBmTPn36lHssAACAJtE0AABAUemZ4rNBDQAA9uGzn/1skmTTpk1Zt25d4+1dunRJ165d9/o2EVVVVbn22mtLPiMAAMCeaBoAAKCo9ExlqCn3AFBU9fX1eeGFFzJ79uysXr06mzdvzkc+8pGdLhm9devWbNu2LdXV1enYsWMZpwUojg0bNmTTpk2pr6/f59revXu3wkSQLF++fLe3b9q0KZs2bWrlaQBahqYBKA1NQ1ukaYBKpGkAWp6eoS3SM5XBBjXYD9OmTctPf/rTXb4QXnTRRTuFz+TJk/OTn/wkXbp0yY9+9KN06dKltUeFPP/883nqqafyyiuvZN26damrq8veLp5pFznl8Ic//CH33ntvZs2alfXr1zfpmKqqqkycOLHEk8F2Y8eOLfcIAC1K01AkmoYi0DS0dZoGqDSahiLRNLR1eoa2Ts9UBhvUoJkmTZqUm266qfHzQw45ZKfLSL7Ve9/73kycODEbNmzIk08+mTPPPLO1xoSsWbMm//zP/5yZM2eWexTYqx//+MeZPHlys4/zLuW0ps985jPlHgGgxWgaikLTUBSahiLQNEAl0TQUhaahCPQMRaBnKoMNatAMr732Wv7t3/4tSTJs2LB86lOfyhFHHJHLL798t+trampy6qmn5oEHHsizzz4rfGg1W7duzT/8wz9kwYIFSZKBAwemR48emTFjRpLkjDPOyPr16/Pyyy9n9erVSZJjjjkmRx11VJkmpr267777GsOnS5cuGTVqVN7xjneka9euqaqqKvN0AFB5NA1FoWkoCk0DAK1L01AUmoYi0DNAa7JBDZrhjjvuSH19fY466qh86UtfSk3Nvv8XGjJkSB544IG8/PLLrTAhbPfggw82Rs+ECRMybty4LFq0qDF8PvvZzzauffLJJ/OTn/wkixcvzgc+8IGMHj26HCPTTk2aNClJcsQRR+SrX/1qunfvXt6BAKDCaRqKQtNQFJoGAFqXpqEoNA1FoGeA1lRd7gGgSJ5//vkkyfjx45sUPUnSt2/fJMnKlStLNhe83RNPPJEkOemkkzJu3Li9rh01alS+9rWvpaamJjfccENee+21VpgQtluyZEmS5MMf/rDwoVDq6uoya9asTJ06NVOmTMmGDRvKPRJAk2gaikLTUBSahqLSNEBRaRqKQtNQBHqGotIzxeQKatAMO+Jl4MCBTT6mc+fOSZLNmzeXYiTYrVdeeSXJ9ktE705DQ8NOl+bt27dvLrjggvzmN7/JnXfemT/+4z9ulTmhS5cuqaurS79+/co9CjTJihUr8qtf/SpTp07N1q1bG2///ve/n4MPPrjx8/vvvz/33XdfDj744Pz93/+9y6EDbYamoSg0DUWhaSgaTQMUnaahKDQNRaBnKBo9U2yuoAbNsOMLV3MiZv369Umy0xdEKLUd512fPn0ab3vrq8l2dw6feOKJSZJnn322xNPB/zriiCOSJG+88UaZJ4F9mzNnTv72b/82jzzyyE7hszvvfve7s3Dhwjz//PP5wx/+0EoTAuybpqEoNA1FoWkoEk0DVAJNQ1FoGopAz1Akeqb4bFCDZujZs2eS5PXXX2/yMbNmzUqSHH744SWZCXZnR+S8NXYOOuigxo9XrVq1yzEdO3bc431QKuecc06S5NFHHy3zJLB3b775Zr773e9m/fr16d69e/74j/843/ve9/a4/tBDD81JJ52UJJk+fXorTQmwb5qGotA0FIWmoSg0DVApNA1FoWkoAj1DUeiZymCDGjTD0KFDkyRTpkxp0voNGzbkvvvuS5IMGzasZHPB2/Xu3TtJsmbNmsbbunfvni5duiRJ5s6du8sxixYtShKXOKVVjRkzJqeeemoefvjh3H333eUeB/borrvuytq1a3PIIYfkW9/6Vt73vvflqKOO2usxO17xOG/evNYYEaBJNA1FoWkoCk1DUWgaoFJoGopC01AEeoai0DOVoWbfS4Adzj333EyePDkzZ87Mgw8+mHHjxu1x7bp16/JP//RPWb16dTp06JBzzz239Qal3Tv66KPz6quv5uWXX87JJ5/cePuQIUMyY8aM3HnnnTnttNMaX43z5ptv5ne/+12S5MgjjyzLzLRff/EXf5Gf//zn+dnPfpZHH300p512Wvr3759OnTrt89gdfyEFpTZt2rQkyfvf//7Gv1zalx1xtHTp0pLNBdBcmoai0DQUiaahCDQNUCk0DUWhaSgKPUMR6JnKYIMaNMPRRx+d8ePH584778yNN96YGTNm5NRTT228/6WXXsqCBQsya9asPProo9mwYUOS5JJLLslhhx1WrrFph0488cQ88sgjmTFjRj70oQ813v6+970vM2bMyMsvv5zPf/7zGTlyZDZv3pxp06Y1XjL6zDPPLNfYtFMdOnTIwIED07Vr18yePTuzZ89u0nFVVVWZOHFiiaeD7XYEzJAhQ5p8TNeuXZMkGzduLMlMAPtD01AUmoYi0TQUgaYBKoWmoSg0DUWhZygCPVMZbFCDZvrYxz6WLVu25L777svUqVMzderUxvt+/OMf77J+/PjxueSSS1pzRMgpp5ySW265JStXrszSpUvTt2/fJMmIESNy1lln5YEHHsjSpUtz++2373Tcu971rrzvfe8rx8i0U9u2bcu//Mu/5Iknnmj2sQ0NDSWYCHavrq4uyfZYb6rNmzcnSZNeaQbQmjQNRaBpKApNQ1FoGqCSaBqKQNNQBHqGotAzlcEGNWimqqqqfPrTn86oUaPy29/+NjNnztztN+DBgwfnQx/60E6X7YXW0rVr11x//fW7ve/P//zPM3jw4EyePDmLFy/Otm3b0q9fv5x55pkZP358qqurW3la2rP77ruvMXx69+6dsWPHZuDAgTn44IOdi7Qphx56aFauXJlly5Zl0KBBTTpmwYIFSZIePXqUcDKA5tM0FIGmoSg0DUWhaYBKomkoAk1DEegZikLPVAYb1GA/DR8+PMOHD8/GjRvz8ssvZ+3atamvr09tbW0GDhyYbt26lXtE2KOzzz47Z599drnHgEyePDlJctxxx+WrX/2qVzHQZg0aNCgrV67MM888k9NPP32f6xsaGhrP7+ZcchqgNWkaikzT0FZoGopC0wCVSNNQZJqGtkDPUBR6pjLYoAYH6KCDDsrQoUPLPQZAIe14z/gPfvCDwoc27YwzzsgTTzyRhx9+OOPHj8/AgQP3uv7nP/95XnnllSTJ2LFjW2FCgP2naQD2n6ahKDQNUMk0DcD+0TMUhZ6pDDaoAQBl06VLl9TV1aV3797lHgX26pRTTskJJ5yQF154IV//+tdzxRVX5NRTT228f9u2bVm1alVeeuml3HXXXXnppZeSJKeeemre+c53lmtsAABKTNNQFJoGAIC30zMUhZ6pDFUNu3tTdmCf6uvr88ILL2T27NlZvXp1Nm/enI985CM7vYfx1q1bs23btlRXV6djx45lnBagbfrmN7+Z5557Lp///OdzyimnlHsc2Ks333wzX//617NgwYImrT/uuOPy93//9+nSpUtpBwPYT5oG4MBpGopE0wCVRtMAHBg9Q5HomeJzBTXYD9OmTctPf/rTLF++fKfbL7roop3CZ/LkyfnJT36SLl265Ec/+pEvfrS4q6++OklSVVWVr371q7vcvj/e/lhQSueee26ee+653H///eKHNq9r16751re+lVtuuSX33ntvNmzYsNt1nTp1yvnnn5/LL788NTV+3AbaJk1DW6FpKDpNQ5FoGqCSaBraCk1DkekZikTPFJ8/DWimSZMm5aabbmr8/JBDDsm6det2u/a9731vJk6cmA0bNuTJJ5/MmWee2Vpj0k7MnDmzWbdDW3Pqqafm3HPPzX333Zef//zn+X/+n/8n1dXV5R4L9qimpiYf+chHcvHFF2fmzJmZP39+1qxZk/r6+hxyyCEZOHBghg8fnoMPPrjcowLskaahLdE0FJ2moWg0DVAJNA1tiaahyPQMRaNnis0GNWiG1157Lf/2b/+WJBk2bFg+9alP5Ygjjsjll1++2/U1NTU59dRT88ADD+TZZ58VPrS4IUOGpKqqqsm3Q1szZcqUHHfccXn55Zdzxx135IknnsioUaPSr1+/dO7ceZ/Hjx07thWmhF116dIlI0aMyIgRI8o9CkCzaBraGk1D0WkaikrTAEWlaWhrNA1FpmcoKj1TTDaoQTPccccdqa+vz1FHHZUvfelLTbok5JAhQ/LAAw/k5ZdfboUJaW++9rWvNet2aGtuuOGGnT5fsWJF7rzzziYdW1VVJX4AoJk0DW2NpqHoNA0AtC5NQ1ujaSgyPQO0JhvUoBmef/75JMn48eOb/H7Fffv2TZKsXLmyZHMBtEcNDQ3lHoF2ZsWKFUmSQw89NB07dtzr2rq6uqxduzZJ0rt375LPBtBUmgag7dA0tDZNA1QCTQPQNugZWpueKT4b1KAZdsTLwIEDm3zMjsufbt68uRQjwW7deuutSZJBgwblpJNOKu8wsBfXXXdduUeAJvnDH/6Qf/iHf0iXLl1y/fXXNyl+/vqv/zp1dXX5yle+khNOOKGVJgXYO01DUWgaikLTUBSaBqgUmoai0DQUgZ6hKPRMZbBBDZphx3vFNydi1q9fnyQ5+OCDSzIT7M4tt9ySJPnCF75Q5klg7w477LByjwBN8vjjjydJTjnllNTW1u5zfW1tbU499dQ89NBDeeyxx8QP0GZoGopC01AUmoai0DRApdA0FIWmoQj0DEWhZypDdbkHgCLp2bNnkuT1119v8jGzZs1Kkhx++OElmQl2Z8c3ZpcsBWgZc+bMSZK8613vavIxO9bOnj27JDMB7A9NQ1FoGoCWpWmASqFpKApNA9By9ExlsEENmmHo0KFJkilTpjRp/YYNG3LfffclSYYNG1ayueDt+vbtmyRZvXp1eQcBqBDLli1LkvTr16/Jx+z4WrzjWIC2QNNQFJoGoGVpGqBSaBqKQtMAtBw9Uxm8xSc0w7nnnpvJkydn5syZefDBBzNu3Lg9rl23bl3+6Z/+KatXr06HDh1y7rnntt6gtHunn3565s6dm8ceeywnnXRSuceBJnnttdcyZcqUzJkzJ6tXr05dXV2+/OUvN/4AmSQLFy7MihUr0qVLl8a/jILWUF9fnySprm766zt2rN2yZUtJZgLYH5qGotA0FJGmoS3TNECl0DQUhaahaPQMbZmeqQw2qEEzHH300Rk/fnzuvPPO3HjjjZkxY0ZOPfXUxvtfeumlLFiwILNmzcqjjz6aDRs2JEkuueQS7+FNqzrvvPMyZcqUPPTQQxk6dOheIx3Krb6+PjfffHPuuuuuxh8wd9i6detOn69YsSLXXHNNqqurc/311zde0h9K7ZBDDskbb7yRZcuW5ZhjjmnSMTtelbPjcv4AbYGmoSg0DUWiaSgCTQNUCk1DUWgaikLPUAR6pjLYoAbN9LGPfSxbtmzJfffdl6lTp2bq1KmN9/34xz/eZf348eNzySWXtOaIkNWrV+fP//zPc+ONN+bGG2/MI488kjFjxmTAgAGpra3d5+7y3r17t9KksP1r5wMPPJAk6dmzZ4477rg88cQTu107YsSI9OnTJ8uWLcvUqVMzfvz41hyVdmzgwIF544038thjj2X06NFNOubRRx9Nkhx11FGlHA2g2TQNRaBpKBJNQxFoGqCSaBqKQNNQFHqGItAzlcEGNWimqqqqfPrTn86oUaPy29/+NjNnzkxDQ8Mu6wYPHpwPfehDOfnkk8swJe3dlVdeudPnzz33XJ577rkmHVtVVZWJEyeWYizYxXPPPdcYPhdffHEuu+yyVFdX5/LLL9/jMaNHj87vf//7PP/88+KHVjNy5MjMmDEjTzzxRB5//PGcdtppe13/2GOP5cknn0ySnHLKKa0xIkCTaRqKQNNQFJqGotA0QCXRNBSBpqEI9AxFoWcqgw1qsJ+GDx+e4cOHZ+PGjXn55Zezdu3a1NfXp7a2NgMHDky3bt3KPSLsl92FPJTKpEmTkiQnn3xyrrjiiiYdM2jQoCTJokWLSjYXvN24cePy29/+NsuXL8+//uu/Zs6cORk/fvwur2RcsWJF7rjjjtx9991Jtr/S8b3vfW85RgbYJ01DpdI0tCZNQ1FoGqASaRoqlaahtegZikLPVAYb1OAAHXTQQRk6dGi5x4CdTJgwodwjQJPMnj07SXL22Wc3+ZhevXol2X6JdGgtNTU1+fznP5+rrroqmzZtyh133JE77rgjvXv3To8ePZIkb7zxRlasWNF4TJcuXfL5z38+HTt2LNfYAE2iaWiLNA1FoWkoCk0DVDJNQ1ukaSgCPUNR6JnKYIMaQAUaN25cuUeAJlm7dm2SpE+fPk0+pkOHDkmS+vr6kswEezJw4MB861vfyrXXXpsFCxYk2f5qnLcGzw7HHHNMPvvZz+aII45o5SkBoDJoGopC01AkmgYAWo+moQj0DEWiZ4rPBjU4AGvWrMkLL7yQhQsXZv369UmS2traDBgwIEOHDk337t3LOyBAG9e5c+ds3bq1MYKaYuXKlUm2f72F1nbkkUfmmmuuybPPPptp06ZlwYIFjedvt27dcvTRR+fd7353TjzxxDJPCtA0mgbgwGgaikbTAJVG0wDsPz1D0eiZYrNBDfbDqlWr8vOf/zxPPvlktm3btts11dXVGTVqVD760Y/u8t7HAGx3+OGHZ/78+Vm8eHGGDx/epGOeeeaZJNt/CIVyGT58eJPPWYC2SNMAtAxNQ1FpGqDoNA3AgdMzFJWeKabqcg8ARTNr1qz8zd/8TR5//PE9Rk+y/bKmU6dOzec///nMmjWrFScEKI4dPzzec889Tboc9OLFi/Pggw8mSU4++eRSjgYAFUvTALQcTQMArU/TALQMPQO0JldQg2ZYtWpVrrnmmmzYsCFJctJJJ+Wss87KoEGDGi8TvXr16sybNy8PPPBAZsyYkY0bN+aaa67J97///fTs2bOM09Nebdy4Mc8991wWLFiQdevWpa6uLg0NDXtcX1VVlQkTJrTihLRnF1xwQe66664sXbo0N910Uz796U+nQ4cOu1377LPP5oYbbsiWLVtSW1ubc845p5WnBYDi0zQUkaahLdM0ANC6NA1FpGloq/QM0JqqGvb23Q/YyU9+8pPcc889qa6uzoQJE3LmmWfudf0jjzyS6667Lg0NDTnvvPPyqU99qpUmhe2vDvvNb36T22+/PZs2bWrWsf/5n/9ZoqlgVw8//HCuu+66JEmvXr0yYsSI3HfffUmS9773vWloaMhLL72UV199Ncn2OP/iF7+YESNGlG1m2LhxY5YtW5aNGzc26ZVlQ4cObYWpAPZN01Akmoai0DQUkaYBikrTUCSahiLQMxSRnikmV1CDZpgxY0aS7d+M9xU9STJmzJjMmjUr9913X+Ox0FpuuOGGPPzww0mS6urq1NbWZu3atUm2/4D55ptv7hRE3bp1S6dOncoyK+3bGWeckQ4dOuSmm27KypUrG8MnSSZPnrzT2i5duuTKK68UPpTNpEmTcu+992bhwoV7fZXjW1VVVWXixIklngygaTQNRaJpKApNQ5FoGqDoNA1FomkoAj1DkeiZYrNBDZph1apVSZLRo0c3+ZjRo0fnvvvuazwWWsMzzzzTGD1jx47Nxz72saxatSpf+MIXkmyPoiRZsmRJ7r333txzzz3p2rVrvvCFL+SII44o29y0X6effnpOPPHE3HPPPZk2bVoWLFiw0ysejjzyyIwcOTLjx4/PoYceWsZJaa/q6+vzve99L9OmTWv2sS5YDLQlmoai0DQUjaahrdM0QKXQNBSFpqFI9AxtnZ6pDDaoQTPU1tZm9erVOfjgg5t8zI61tbW1pRoLdvHggw8mSY466qh85jOfSZK88cYbu6zr379/PvGJT2TYsGH5/ve/n29/+9v57ne/26xzHFrKIYcckksvvTSXXnpp6uvrs379+tTX16e2tjY1NX5kobzuvffexvA59NBDM27cuBxzzDGpra1NdXV1macDaDpNQ1FoGopI09CWaRqgUmgaikLTUDR6hrZMz1QGX0mgGY455phMnz49CxcuzDHHHNOkYxYuXNh4LLSWOXPmJEnOO++8Jq0fOXJkxo4dmwceeCB33nlnLr300lKOB/tUXV2dbt26lXsMaPTQQw8l2f5KsauvvtpfaAKFpWkoCk1D0Wka2hpNA1QKTUNRaBqKTM/Q1uiZymArITTDBRdckCT5/e9/n82bN+9z/ebNm/O73/1up2OhNaxZsyZJ0q9fv8bb3rp7fMuWLbscs+OS6E899VSJpwMonldffTVJcskllwgfoNA0DUWhaQBalqYBKoWmoSg0DUDL0TOVwQY1aIbhw4fn0ksvzauvvpqvfe1rWbBgwR7XLliwIFdffXWWLFmSD3/4wxk+fHjrDQr/463foA866KDGj3eE0VvteCXEsmXLSj8YQEH179+/3CMAHBBNQ9FoGoCWpWmAotM0FI2mAWg5eqbYvMUnNMOtt96aqqqqHHPMMZk/f37+9m//NgMGDMixxx6bQw89NFVVVVm9enXmzZvXeMnoY489tvHYPXGZXlraoYcemhUrVmT9+vU73VZTU5OtW7dm4cKF6d27907HrFixIsnuX7UDpbZ48eJMmjQps2bNyuuvv55Nmzalvr5+r8dUVVVl4sSJrTQh7V3fvn2zYMGCnb6uAhSRpqEoNA1Fo2lo6zQNUCk0DUWhaSgSPUNbp2cqgw1q0Ay33HLLLrctXLiwMXJ2Z968eZk3b95eH1f40NIGDBiQFStWZPHixRk2bFiSpEOHDhk4cGDmzp2bBx54ICNGjNjpmHvvvTdJcthhh7X6vLRvt99+e375y19m27ZtzTquoaGhRBPBrt7znvdkwYIFmTZtWuPXVYAi0jQUhaahSDQNRaBpgEqhaSgKTUNR6BmKQM9UBhvUACrQCSeckOnTp+e5557L+eef33j7GWeckblz5+bJJ5/Mddddl9NPPz2bNm3KlClT8txzzyVJRo4cWa6xaYeeeeaZ/Md//Efj58cdd1yOOeaY1NbWpqqqqoyTwc4uuOCCPPLII7n33nszatSoDBkypNwjAUBF0zQUhaahKDQNALQuTUMR6BmKQs9UhqoGW1sBKs6yZcvyuc99LjU1Nbn++uvTvXv3JMm2bdvy5S9/OS+//PJuj+vdu3euueaa1NbWtuK0tGff+ta38uyzz6Zr16754he/mOOPP77cI8EerVmzJt/73vcyf/78XHDBBRkzZkz69++fTp06lXs0AKg4moai0DQUiaYBgNajaSgCPUOR6Jnis0ENoEItW7Ys9fX16dmz507fmNevX5+f/vSnefzxx3e6XO/JJ5+cP/mTP0mvXr3KMS7t1B//8R9n/fr1+fjHP57x48eXexzYo8svv3y/j62qqsrEiRNbcBoAaB80DUWgaSgKTQMArU/T0NbpGYpCz1QGb/EJUKH69Omz29tra2vzuc99Lp/+9Kfz2muvpb6+Pn379vVqHMpi8+bNSeJVOVQ0rwcBgP2jaSgCTUN7oGkAYP9oGto6PUN7oGfaDhvUoAS2bNmSN998M926dUt1dXW5x4HdOuigg3LMMceUewzauZ49e+b111/P1q1byz0K7NWll15a7hEAWpWmoQg0DW2BpqEoNA3Q3mgaikDTUG56hqLQM5XBBjVohk2bNmXmzJlJkqFDh6ZLly473b927dr8+Mc/zvTp07Nt27Z06dIl733ve/ORj3wkHTt2LMfIAG3au9/97tx5552ZNWtWBg8eXO5xYI8+/OEPl3sEgBahaQBalqahKDQNUCk0DUDL0TMUhZ6pDF4yAM0wderUXHPNNbnpppt2eq/4JKmvr8+3v/3tPPXUU43vF79p06bccccd+Zd/+ZdyjAvQ5l144YWpra3N7bffntWrV5d7HACoeJoGoGVpGgBoXZoGoOXoGaA1uYIaNMMf/vCHJMmoUaN2uST0Y489lvnz5ydJjj766AwdOjQzZ87Myy+/nKeeeirPPPNMTjrppNYemXZu27ZtmT59el588cUsW7YsGzduTH19/V6Pqaqqyle/+tVWmpD2rmfPnvniF7+Yf/zHf8zf//3f51Of+lRGjBhR7rEAoGJpGopG09DWaRoAaF2ahqLRNLRlegZoTTaoQTMsWrQoSfLOd75zl/seeuihJMkxxxyTb37zm+nQoUO2bt2aq666KnPnzs2DDz4ofGhVs2bNyrXXXpsVK1aUexTYo6uvvjpJUltbm9deey3XXHNNunbtmn79+u3yCsi3E+mU09atW/Pyyy9n0aJFWb9+fZLt5/FRRx2Vo48+OjU1fswG2iZNQ5FoGopA01BUmgYoKk1DkWga2jo9Q1HpmWLypwLNsGbNmiRJnz59drp969atefHFF5Mk5513Xjp06JAkqampybnnnpu5c+dm3rx5rTss7dqrr76ab33rW6mrq0uy/Vzs27dvamtrd3lVGZTTzJkzd7ntzTffzNy5c8swDezb5s2b85vf/CaTJ09ujJ63q62tzXvf+95ccskl6dy5cytPCLB3moai0DQUhaahaDQNUHSahqLQNBSBnqFo9Eyx2aAGzbDji9zbd9zOmzev8QfMt7/6pl+/fknifbtpVf/93/+durq6VFdX58Mf/nDGjx+fLl26lHss2MWQIUNSVVVV7jGgSVasWJFvfOMbWbp06V7XrV+/Pr/73e/yxBNP5Ktf/Wp69erVShMC7JumoSg0DUWhaSgSTQNUAk1DUWgaikDPUCR6pvhsUINm6Ny5czZu3Nj4Cp0ddrwqp2/fvunevftO9+3r8qdQCs8//3yS5IILLsiHPvShMk8De/a1r32t3CNAk2zdujX/8A//0Bg+/fv3z1lnnZVBgwY1fu9fvXp15s6dmylTpmTx4sVZunRp/uEf/iHf/e53G1+1C1Bumoai0DQUhaahKDQNUCk0DUWhaSgCPUNR6JnKYIMaNMPhhx+eBQsW5IUXXsi73vWuxtuffPLJJNt3mb/d2rVrkyTdunVrnSEhybp165Iko0aNKvMkAJXh/vvvz6uvvpokufjii3PZZZftcin+/v37Z+jQoXn/+9+fW265Jf/1X/+VxYsXZ/LkyXnf+95XjrEBdqFpKApNA9CyNA1QKTQNRaFpAFqOnqkM3uAammH48OFJknvvvTczZszIpk2bctddd2XevHlJkpEjR+5yzCuvvJIk6dmzZ+sNSru3I7S9MgygZTz++ONJklNOOSVXXHHFLuHzVtXV1bn88stzyimnJEmmTp3aKjMCNIWmoSg0DUDL0jRApdA0FIWmAWg5eqYy2KAGzTB+/PgcdNBB2bhxY77zne/k4x//eH72s58lSY488si8+93v3uWYGTNmJEkGDhzYipPS3r3zne9MkixatKjMkwBUhh1fT88+++wmH7Nj7cKFC0syE8D+0DQUhaYBaFmaBqgUmoai0DQALUfPVAZv8QnN0KNHj/zt3/5t/vmf/zmrV69uvL1Pnz7567/+61RVVe20funSpXnxxReTJCeeeGJrjko79/73vz9PPPFE7rzzzowZM8b7alN2K1asaPy4d+/eu719f7z1saCUNmzYkGT7zwJNtWPtxo0bSzITwP7QNBSFpqGt0TQUnaYBKoWmoSg0DW2JnqHo9ExlsEENmmnIkCG5/vrrM2vWrKxevTo9evTI8ccfv9sfLFevXp1LLrkkSfKud72rtUelHRs0aFA+8YlP5Kc//Wm+973vZcKECY2Xk4ZyuPLKK5MkVVVVmThx4i6374+3PxaUUm1tbdasWZNly5bl6KOPbtIxy5YtazwWoC3RNBSBpqGt0TQUnaYBKommoQg0DW2JnqHo9ExlsEEN9kNNTU2GDRu2z3XHH398jj/++FaYCHZ26623JtkeQNOnT8+VV16ZE088MUcccUQ6d+68z+MvvfTSUo9IO9XQ0NAmHwv25eijj84zzzyTe+65J6eeemqTjrn33nuTePsIoG3SNLR1moa2StNQVJoGqDSahrZO09AW6RmKSs9UBhvUACrQLbfcstPndXV1mTZtWqZNm9ak44UPLW3ChAnNuh3amve85z155pln8sILL+SGG27Ipz71qXTp0mW3azdv3pyf/vSnef7555MkY8aMac1RAaAiaBraGk1D0WkaAGhdmoa2RM9QdHqmMtigBgCU3Lhx45p1O7Q1Z5xxRu67777Mnj07U6ZMyYwZM3LaaafluOOOy6GHHpokWbNmTebMmZPHH388a9euTbL9VbpnnHFGOUcHAKAFaBqKTtMAALRfeoai0zOVoarBtRcBAGCf1q9fn+985zuZM2dOk9YPHjw4f/u3f5va2toSTwYAALBvmgYAACgqPVN8NqgBAEAT1dfX59577829996bV199dbdrjjjiiJx33nk599xzU11d3coTAgAA7JmmAQAAikrPFJsNagBA2dTX12fWrFlJkoEDB+bggw/e6/o333wzr7zySpJkyJAhqaqqKvmMsCdvvPFGFi1alPXr1ydJamtrc9RRR6VHjx5lngwAgNaiaSgyTQMA0L7pGYpMzxSPDWoAQNlMnTo1P/jBD1JbW5sbbrghnTt33uv6zZs35zOf+UzWr1+fL37xi3n3u9/dSpMCAADsStMAAABFpWeA1uR6dgBA2Tz55JNJktNOO22f4ZMknTt3zmmnnZYkeeKJJ0o6GwAAwL5oGgAAoKj0DNCaaso9AAD777Of/WySpKqqKtdee+0ut++Ptz8WlNK8efOSJMOGDWvyMcOGDct9992XOXPmlGos2EVdXV0ef/zxJMnJJ5+cbt267XX92rVrM2PGjCTJe97zntTU+LEbAHZH01B0moai0DQAUBqahiLTMxSFnqkM/hQACmz58uXNuh3ampUrVyZJ+vTp0+RjdqxdsWJFSWaC3Xnsscdy4403pmfPnhkzZsw+13ft2jUTJ07MqlWrUlNTk/e85z2tMCUAFI+moeg0DUWhaQCgNDQNRaZnKAo9UxlsUAMosLFjxzbrdmirGhoamr22vr6+VOPALqZNm5Zk+6XOO3TosM/1HTp0yOmnn57bb789Tz31lPgBgD3QNFQKTUNbp2kAoDQ0DZVAz9DW6ZnKYIMaQIF95jOfadbt0NZ069YtK1euzKuvvppjjz22Sce8+uqrSZJDDjmklKPBTl5++eUkydChQ5t8zJAhQ3L77bdn/vz5pRoLAApP01B0moai0DQAUBqahiLTMxSFnqkM1eUeACrZlClTMmXKlEyfPr3cowC0STuC56GHHmryMVOmTEmSHH300SWZCXbnjTfeSJL06tWrycfsWLvjWIAi0jQAe6dpKApNA7RXmgZgz/QMRaFnKoMrqEEJ3XDDDY0f9+/fPx/60IcyZsyYVFVVlXEq2oMd597JJ5+c0047rczTwJ6NHj06Tz75ZJ577rncdtttufDCC/e6/rbbbsvzzz+fJM5tWlV19fbXdWzZsqXJx2zdujVJ8y6PDtDWaBrKRdNQFJqGotA0QHulaSgXTUMR6BmKQs9UBldQg1ayZMmSXHfddfmrv/qrPPjgg+Uehwq341VhBx10ULlHgb06/fTT8453vCNJcvPNN+f73/9+Zs2alW3btjWu2bZtW1588cV873vfy80335wkGTBgQM4444yyzEz71L179yTJokWLmnzMwoULk2y/TDpAJdA0tCZNQ1FoGopC0wBoGlqXpqEI9AxFoWcqgyuoQQldeumlSZK6urrMnj07c+fOzdKlS3PjjTdm3Lhx5R2OitatW7esXbu28Zs1tFVVVVX5/Oc/n6985StZvXp1nnzyyTz55JOpqalJbW1tkmT9+vWNr3JIkh49euQLX/iCVznSqgYPHpxly5Zl8uTJee9739ukYyZNmpQkOe6440o5GkBJaRrKRdNQFJqGotA0QHulaSgXTUMR6BmKQs9UBhvUoIQ+/OEP7/T5li1bMmfOnLz44otlmoj24sgjj8zMmTOzfPnyDBw4sNzjwF716dMn3/3ud3PTTTflqaeeSrL9srurV6/eZe2oUaPy6U9/OoceemgrT0l7N2bMmDzyyCOZN29efvrTn+YTn/jEHgO8oaEhP/vZzzJ//vzGYwGKStNQLpqGItE0FIGmAdorTUO5aBqKQs9QBHqmMlQ1eMNVgIpz//3350c/+lFOOeWUfP7zny/3ONBkS5YsyfTp07NgwYKsW7cuSXLIIYfk6KOPzogRI9KvX78yT0h79o1vfCPPP/98kuSYY47JBRdckCFDhqRHjx5JkjfeeCMvvvhi7rrrrsbwGTp0aK666qqyzQwARaVpKCpNQ1umaQCg9WgaikjP0JbpmeKzQQ2gAjU0NOSb3/xmnn/++VxyySX58Ic/7FK7AAdo/fr1+drXvpZFixY1af2AAQNy1VVXNV4KHQBoOk0D0PI0DQC0Hk0D0LL0TPHZoAZQgWbOnJm6urr84he/yMKFC9O/f/+cdtppecc73pGuXbumurp6r8cPHTq0lSYFKJa6urr86le/yqRJk1JXV7fbNZ07d84555yTK664Ip06dWrlCQGgMmgagNLQNADQOjQNQMvTM8Vmgxrspw0bNmTq1KmZPXt2Vq9enc2bN+czn/lMDjvssMY1q1atyoYNG9KxY8ccfvjhZZyW9ubyyy/f72OrqqoyceLEFpwGoPJs2LAhzz//fF5++eVdLnU+bNiwHHzwwWWeEGDfNA1tmaYBKC1NA1QCTUNbpmkASkfPFFNNuQeAIrr77rvzq1/9Kps2bdrp9s2bN+/0+cyZM3PttdemY8eO+eEPf+jykRSCfcsA+3bwwQdn1KhRGTVqVLlHAdgvmoZKpmkA9k3TAEWnaahkmgZg7/RMMdmgBs3061//Or/5zW+SJDU1NRkwYEDmz5+/27Wnn356/uM//iOrV6/O1KlTc84557TmqLRjV111VblHAACgjdI0FIGmAQBgTzQNRaBpAGBnNqhBM8yfP78xes4444x86lOfysEHH7zHy/RWV1dn9OjRufvuu/Pss88KH1rN0KFDyz0CAABtkKahKDQNAAC7o2koCk0DADurLvcAUCR33313kmTw4MH57Gc/26T3Lh48eHCSZNGiRSWdDQAAYF80DQAAUGSaBgCgmGxQg2Z48cUXkyTnn39+k4857LDDkiSrVq0qyUwAAABNpWkAAIAi0zQAAMXkLT6hGd54440kSf/+/Zt8TKdOnZIkW7ZsKclMsC8bNmzI1KlTM3v27KxevTqbN2/OZz7zmcYoT7aH+YYNG9KxY8ccfvjhZZwWAIBS0jQUkaYBAGAHTUMRaRoAsEENmqWmpiZbtmzJm2++2eRjVq9enSTp2rVriaaCPbv77rvzq1/9Kps2bdrp9s2bN+/0+cyZM3PttdemY8eO+eEPf5ja2trWHBMAgFaiaSgaTQMAwFtpGopG0wDAdt7iE5qhd+/eSZKlS5c2+Zjnn38+SfNezQMt4de//nV++tOfZtOmTampqckxxxyzx7Wnn356unfvni1btmTq1KmtOCUAAK1J01AkmgYAgLfTNBSJpgGA/2WDGjTDsGHDkiT33Xdfk9avWrUqkydPTpIMHz68ZHPB282fPz+/+c1vkiRnnHFGbrrppnz729/e4/rq6uqMHj06SfLss8+2yowAALQ+TUNRaBoAAHZH01AUmgYAdmaDGjTD+eefnw4dOmTBggW59dZb97p2yZIl+da3vpUNGzakc+fOOffcc1tpSth+yegkGTx4cD772c/m4IMP3ucxgwcPTpIsWrSopLPBgVixYkVWrFjRrEv4AwD/S9NQFJqGSqVpAODAaBqKQtNQifQMcCBqyj0AFEnfvn1zxRVX5Be/+EVuueWWzJgxI6NGjWq8//HHH0+HDh3y0ksv5dlnn019fX2S5BOf+ES6detWrrFph1588cUk22O9qQ477LAk219RBm3VlVdemSSpqanJ2LFj88EPfjB9+vQp81QAUByahqLQNFQqTQMAB0bTUBSahkqkZ4ADYYMaNNNFF12UJJk4cWLmzp2buXPnNt739lfrVFdX56Mf/WjOPvvsVp0R3njjjSRJ//79m3xMp06dkiRbtmwpyUzQkrZu3ZrJkyfnwQcfzBlnnJGLL744ffv2LfdYAFAImoYi0DRUOk0DAPtP01AEmoZKpmeA/WGDGuyHiy66KCNGjMhtt92W6dOnZ+3atTvdf/DBB+fkk0/OBz/4wQwYMKBMU9Ke1dTUZMuWLc26xO7q1auTJF27di3RVHDghgwZkqqqqtTV1WXBggXZunVrHnzwwTz88MP55S9/We7xoNHMmTOTJIccckiOOuqoMk8DsCtNQ1unaahUmoai0DRAW6dpaOs0DZVIz1AUeqZtskEN9tORRx6ZCRMmJNn+fttr1qxJfX19DjnkkPTp0yfV1dVlnpD2rHfv3lm0aFGWLl2aYcOGNemY559/PknzXs0Dre1rX/ta48dbtmzJnDlz8sILL2TWrFnlGwp24+qrr278ePjw4bnkkkty/PHHl3EigF1pGtoyTUOl0jQUhaYBikDT0JZpGiqRnqEo9EzbZIMatIDevXund+/e5R4DGg0bNiyLFi3Kfffdl3POOWef61etWpXJkycn2f5NGoqgY8eOGTp0aIYOHVruUWCvnn322Tz77LM54YQTcumllzpngTZJ09DWaBraA01DUWgaoAg0DW2NpqHS6RmKQs+0HV46AFCBzj///HTo0CELFizIrbfeute1S5Ysybe+9a1s2LAhnTt3zrnnnttKUwJUrrFjx2bs2LE57bTTGv9y9IUXXtjpVTsAwJ5pGoDy0jQAcGA0DUD56Jm2yRXUACpQ3759c8UVV+QXv/hFbrnllsyYMSOjRo1qvP/xxx9Phw4d8tJLL+XZZ59NfX19kuQTn/hEunXrVq6xASrGZz7zmZ0+X758uUudA0AzaBqA8tI0AHBgNA1A+eiZtqmqoaGhodxDQNGsW7cuDz/8cF588cUsW7YsGzdubPzBcU+qqqpy7bXXttKEsN3vf//7TJw4Mdu2bdvruurq6nz0ox/N+PHjW2ky2L2lS5dm9uzZWb16derq6vK+971PjANACWgaikLTUDSaBgBah6ahKDQNRaJngFJyBTVopscffzw//vGPs2HDhnKPAvt00UUXZcSIEbntttsyffr0rF27dqf7Dz744Jx88sn54Ac/mAEDBpRpSkjmz5+ff//3f9/llQujR4/eKX7uvvvu3HrrrTn44IPzT//0T6mp8aMMADSXpqFINA1FoWkAoPVoGopE01AEegZoDb5iQDPMmTMn//qv/9r4KpwePXpk4MCBqa2tTXV1dZmng9078sgjM2HChCTJihUrsmbNmtTX1+eQQw5Jnz59nLuU3bRp0/JP//RP2bp16z7Xjh07Nr/85S+zbt26TJ8+fadLokMp3XrrrUnSrFeMrV+/PnfffXeS5NJLLy3ZbADNoWkoIk1DW6dpKAJNA1QKTUMRaRraMj1DEeiZymCDGjTD7373u9TX16dTp075sz/7s4wZM6bcI0Gz9O7dO7179y73GNDojTfeyL/8y79k69atOfLII/PRj340xx9/fD7+8Y/vdv1BBx2UkSNH5tFHH82MGTPED63mlltuSbLrK8b2Zv369Y3HiR+grdA0FJ2moa3RNBSFpgEqhaah6DQNbYmeoSj0TGWwQQ2a4aWXXkqSfOADHxA9tGk33HBDqqqqcsUVV6RHjx5NOmbt2rW5+eabU1VV1fhKHii1O+64I5s3b07v3r3z9a9/PV27dt3nMUOHDs2jjz6a+fPnt8KEAFBZNA1FoWkoCk0DAK1L01AUmoYi0DNAa3K9UGiGDRs2JElOOumk8g4C+zBlypQ8+OCDefPNN5t8zIYNGxqPg9byzDPPJEkuvPDCJoVPkhxxxBFJkmXLlpVqLGgR27ZtS5LU1HhNCNB2aBqKQtNQFJqGSqZpgLZI01AUmoYi0DNUMj3T9tigBs3QvXv3co8AUFGWL1+eJBk0aFCTjznooIOSJJs2bSrJTNBSFixYkCRNvtw0QGvQNAAtS9NQyTQN0BZpGoCWo2eoZHqm7bFVEJrhxBNPzAMPPJD58+c36xs1FMGWLVuSJB07dizzJLQn9fX1O/23KXa8SrJLly4lmQmS7a9w3J2nnnoq8+bN2+uxW7Zsyeuvv54HHnggSXLssce2+HwA+0vTUMk0DeWgaWirNA1QqTQNlUzT0Nr0DG2VnqlMNqhBM1x00UV59NFHc9ttt+XMM8/0jZeK8tJLLyVJDj300DJPQnvSvXv3LFu2LMuWLcvgwYObdMzcuXOTJL179y7laLRzN9xww25vnzhxYrMep6qqKuPHj2+JkQBahKahkmkaykHT0FZpGqBSaRoqmaahtekZ2io9U5lsUINm6N+/fz73uc/lX//1X/P1r389EyZMyFFHHVXusSC33nrrbm+/55579hkyO3aRP/3000mSd77znS0+H+zJ8ccfn2XLluXxxx/PmDFj9rl+69atmTRpUpLkhBNOKPV4sN9qampy7LHH5oMf/GCGDh1a7nEAGmka2ipNQ1FpGiqVpgHaKk1DW6VpKCI9Q6XSM22TDWrQDDt26h555JGZN29ePv/5z2fAgAE54ogj0qlTp70eW1VVlQkTJrTGmLRDt9xyy25vv/fee5v1OB07dsxFF13UEiNBk4wbNy4PPfRQnn766Tz77LMZPnz4Htdu3bo11113XV5//fVUVVXlve99bytOSntz3XXXNX7c0NCQz33uc0mSL3/5y+nXr98ej6uqqkrHjh1zyCGHpLq6uuRzAjSXpqGt0jQUlaahrdI0QKXSNLRVmoYi0jO0VXqmMtmgBs2wu/c6XrhwYRYuXNik44UPbVHHjh3To0ePDB48OBdeeGEGDhxY7pFoR0444YScdtppefzxx3PNNdfkggsuyOjRoxvvX7ZsWd5888289NJLmTRpUl5//fUkybnnnuuVkZTUYYcdttvbe/bsucf7AIpA01CJNA3lpGloqzQNUKk0DZVI01Aueoa2Ss9UpqqGhoaGcg8BRXHllVce0PHXX399C00Ce3f55ZcnSb7//e/nyCOPLPM0sHdbtmzJ97///cyYMaNJ60eNGpX/9//9f73yAQD2g6ahKDQNRaJpAKD1aBqKQtNQFHoGaC2uoAbNIFwoit69eyfZ/v7a0NZ17Ngxf/d3f5dJkybl97//feMrcN6uZ8+eufjii/O+972vlScEgMqhaSgKTUORaBoAaD2ahqLQNBSFngFaiyuoAQBtyuLFizNv3rysWbMm9fX1OeSQQ3L00Ufn6KOPTlVVVbnHAwAA2CtNAwAAFJWeAUrFBjUAAGiidevW5eGHH86LL76YZcuWZePGjamvr9/rMVVVVbn22mtbaUIAAIA90zQAAEBR6Zlic01RgAr32muvZcqUKZkzZ05Wr16durq6fPnLX07fvn0b1yxcuDArVqxIly5dMnTo0DJOC9B2Pf744/nxj3+cDRs2lHsUAGhXNA1Ay9A0AFAemgbgwOmZ4rNBDaBC1dfX5+abb85dd921y87xrVu37vT5ihUrcs0116S6ujrXX399evbs2ZqjArR5c+bMyb/+6782fj3t0aNHBg4cmNra2lRXV5d5OgCoTJoGoOVoGgBofZoGoGXomcpggxrsxuWXX55k++UeJ06cuMvt++PtjwWl9uMf/zgPPPBAkqRnz5457rjj8sQTT+x27YgRI9KnT58sW7YsU6dOzfjx41tzVEiSLFiwILNmzcrrr7/e5EvyTpgwoZWmo7373e9+l/r6+nTq1Cl/9md/ljFjxpR7JIC90jRUAk1D0Wga2jJNAxSNpqESaBqKRM/QlumZymCDGuxFQ0NDm3ws2JfnnnuuMXouvvjiXHbZZamurt5rvI8ePTq///3v8/zzzwsfWtWSJUty4403Zvbs2c0+VvzQWl566aUkyQc+8AHhAxSKpqGoNA1FomkoAk0DFJWmoag0DUWhZygCPVMZbFCD3bj00kubdTu0NZMmTUqSnHzyybniiiuadMygQYOSJIsWLSrZXPB2q1atylVXXZW1a9c23talS5d07do1VVVVZZwMdrZhw4YkyUknnVTeQQCaSNNQdJqGotA0FIWmAYpG01B0moYi0DMUhZ6pDDaowW58+MMfbtbt0NbseJXD2Wef3eRjevXqlSRZvXp1KUaC3fqv//qvxvA5++yzc+GFF6Z///5lngp21b1796xYsaLcYwA0maah6DQNRaFpKApNAxSNpqHoNA1FoGcoCj1TGarLPQAALW/HD5N9+vRp8jEdOnRIkn2+pzy0pGeeeSZJMnbs2PzZn/2Z8KHNOvHEE5Mk8+fPL/MkANA+aBqKQtNQFJoGAFqXpqEI9AxFoWcqgw1qABWoc+fOSbLTJXn3ZeXKlUmS2trakswEu/PGG28kSc4888wyTwJ7d9FFF6VTp0657bbbsmnTpnKPAwAVT9NQFJqGotA0ANC6NA1FoGcoCj1TGWxQA6hAhx9+eJJk8eLFTT5mx6skjjzyyFKMBLvVtWvXnf4LbVX//v3zuc99Lm+88Ua+/vWvZ9GiReUeCQAqmqahKDQNRaFpAKB1aRqKQM9QFHqmMtSUewBoi2bOnFmSxx06dGhJHhfebvjw4Zk/f37uueeenH/++amu3vt+5MWLF+fBBx9Mkpx88smtMCFsd8wxx2TGjBl57bXXcvTRR5d7HNijG264Icn2vxyaN29ePv/5z2fAgAE54ogj0qlTp70eW1VVlQkTJrTGmACNNA1Fp2koCk1DUWgaoGg0DUWnaSgCPUNR6JnKYIMa7MbVV1/d4o9ZVVWViRMntvjjwu5ccMEFueuuu7J06dLcdNNN+fSnP50OHTrsdu2zzz6bG264IVu2bEltbW3OOeecVp6W9mz8+PGZMWNGJk2alNNPP73c48AeTZkyZZfbFi5cmIULFzbpePEDtDZNQ9FpGopC01AUmgYoGk1D0WkaikDPUBR6pjLYoAatpKGhodwj0I507949f/Inf5Lrrrsu999/f/7whz9kxIgRjfffeeedaWhoyEsvvZRXX301yfY4v/LKK9OlS5dyjU07NHz48HzgAx/I7373u9x000355Cc/mZoaP57Q9vTu3bvcIwCUnaahNWkaikLTUBSaBkDT0Lo0DUWgZygKPVMZqhr8NAa7cOloKsVjjz2Wm266KRs2bNjrui5duuTKK6/MqFGjWmky2G7HKx4mTZqU2bNnp0ePHhk9enT69++fzp077/P4sWPHlnpEACgkTUOl0DS0dZoGAEpD01ApNA1tmZ4BWpMNagAVbt26dbnnnnsybdq0LFiwIPX19Y33HXnkkRk5cmTGjx+fQw89tIxT0l5dfvnl+32sS/IDALQPmoa2TNMAALAvmoa2Ss8ArckGNYB2pL6+PuvXr099fX1qa2tdppeyO5D4SZL//M//bKFJAAAoAk1DW6NpAABoDk1DW6JngNZkgxoAUDbLly8/oOMPO+ywFpoEmm/HXybV1dWlZ8+eqa6uLvdIAAC0Mk1DkWkaAID2Tc9QZHqmeGxQgwOwevXqzJw5MwsXLsz69euTJLW1tRkwYECGDh2a7t27l3dA2q177703p59+empra8s9CkBFqa+vz4MPPpgHH3ww8+bNy9atW1NVVZXvfe97OfLIIxvXTZs2LS+++GIOPvjgfOhDHyrjxAB7p2loqzQNQGloGqDSaBraKk0D0PL0TLG5ZijshzfeeCP//u//nieffDLbtm3b7ZoOHTrk1FNPzcc+9rH06NGjlSekvfu3f/u3/OxnP8u73vWunHHGGRk5cmQ6depU7rEACm3NmjX5x3/8x8yZM2en23f3eo/DDjss3/3ud5MkI0aMyMCBA1tjRIAm0zS0dZoGoOVpGqCSaBraOk0D0LL0TPHZoAbNtGDBgnzjG99ofCXOnmzbti2PPfZYnnvuuXz1q1/NgAEDWmlC2G7btm2ZPn16pk+fni5duuSUU07JGWeckRNPPNElTgGaqb6+Ptdcc03mzZuXqqqqjB49OkOGDMlPfvKT3a4fMGBABg0alLlz5+bJJ58UP0CbomkoCk0D0HI0DVBJNA1FoWkAWoaeqQw2qEEzbNq0Kd/5zncao+fEE0/Me9/73hx33HGNl4levXp15s6dm8mTJ+fZZ5/NunXr8u1vfzv//M//nM6dO5dxetqTb3zjG3nkkUfy+OOPZ+3atdm0aVMefvjhPPzwwzn00ENz+umnZ8yYMRk0aFC5R4VGr732WqZMmZI5c+Zk9erVqaury5e//OX07du3cc3ChQuzYsWKdOnSJUOHDi3jtLQ3Oy4X3aFDh3zxi1/MSSedlCR7jJ8kGTlyZObOnZtZs2a10pQA+6ZpKApNQxFpGtoyTQNUCk1DUWgaikbP0Jbpmcpggxo0w91335033ngjVVVV+dM//dOcffbZu6zp3bt3evfundGjR+f+++/Pj370o6xatSr33HNPLrroojJMTXs0ePDgDB48OJ/4xCfy7LPP5pFHHslTTz2VTZs2Zc2aNbnrrrty1113pW/fvjnjjDMyZsyYnX7AhNZUX1+fm2++OXfddVfq6+t3um/r1q07fb5ixYpcc801qa6uzvXXX5+ePXu25qi0Y48++miS5JxzzmkMn305+uijkyRLliwp1VgAzaZpKApNQ5FoGopA0wCVQtNQFJqGotAzFIGeqQyuHQrN8PTTTydJxo0bt9voebuzzz47Z511VpLkySefLOlssDvV1dU56aST8tnPfjY33XRT/vIv/zLvfve7U1OzfX/y0qVLc8stt+Qv//Iv8//9f/9f7rrrrqxZs6bMU9Pe/PjHP84dd9yR+vr69OzZM6eeeuoe144YMSJ9+vRJfX19pk6d2opT0t4tXLgwyfZX3DRVt27dkiTr1q0ryUwA+0PTUDSahiLQNBSBpgEqhaahaDQNbZ2eoQj0TGWwQQ2a4bXXXkuSnH766U0+5j3vec9Ox0K5dOrUKaeffnq++MUv5kc/+lH+5E/+JEOGDGm8f968efnZz36WCRMmlHFK2pvnnnsuDzzwQJLk4osvzvXXX5+//uu/3usxo0ePTpI8//zzJZ8PdnjzzTeTJIccckiTj9nxarPqaj9yA22HpqHINA1tkaahKDQNUCk0DUWmaWhr9AxFoWcqg7f4hGbYtGlTkqS2trbJx3Tt2nWnY6EtqK2tzTnnnJNzzjknq1atyiOPPJL//u//zoYNG7Jt27Zyj0c7MmnSpCTJySefnCuuuKJJxwwaNChJsmjRopLNBW9XW1ubNWvWZOXKlY2Xhd6XpUuXJvnfV+kAtAWahkqhaWgrNA1FoWmASqFpqBSahrZAz1AUeqYy2CoIzbDji9err77a5GN2vKexL3y0RQsXLszdd9+de+65Jxs2bCj3OLRDs2fPTpImXY5/h169eiVJVq9eXYqRYLeOOuqoJMncuXObfMxjjz2WJDn22GNLMhPA/tA0VBpNQ7lpGopC0wCVQtNQaTQN5aRnKAo9UxlcQQ2a4bjjjssTTzyR22+/Paeffno6dOiw1/Xbtm3L7bff3ngstAUrVqzII488kkcffbTx/bp36NSpU9797neXaTLao7Vr1yZJ+vTp0+Rjdnzt3XFpXmgNp5xySp5//vncc889ef/737/PV+lOnTo106ZNS/K/lzwHaAs0DZVA09CWaBqKQtMAlULTUAk0DW2FnqEo9ExlsEENmuHMM8/ME088kQULFuQ73/lOJkyYkJ49e+527apVq/LDH/4wL7/8cpJk3LhxrTgp7Gz9+vV5/PHH88gjj+Sll15KQ0ND433V1dUZNmxYxowZk1NPPTVdunQp46S0N507d87WrVsbI6gpVq5cmaR5l/GHA/Xe9743t912W1asWJFvfetbufLKK3PkkUfusm7NmjW588478/vf/z5JMmDAgJx22mmtPS7AHmkaikrT0FZpGopC0wCVQtNQVJqGtkjPUBR6pjLYoAbNMHLkyJxyyil56qmn8uyzz+Zzn/tchg8fnuOOOy7dunVLVVVV1qxZkzlz5uTZZ5/N1q1bkySjRo3KiBEjyjw97U1dXV2eeuqpPPLIIzudjzscc8wxOeOMM3L66aene/fu5RmSdu/www/P/Pnzs3jx4gwfPrxJxzzzzDNJstsfPKFUOnbsmC984Qu5+uqrM3/+/PzN3/xN+vfv33j/tddem02bNuX1119v/Mul2tra/M3f/E2qqqrKNTbALjQNRaJpKAJNQ1FoGqBSaBqKRNPQ1ukZikLPVAYb1KCZ/vIv/zLXXXddpk6dmq1bt2b69OmZPn36HtePHj06n/3sZ1txQtj+Tfjpp5/Opk2bdrr98MMPz5gxY3LGGWekX79+ZZoO/tfw4cMzf/783HPPPTn//PNTXV291/WLFy/Ogw8+mCQ5+eSTW2FC+F8DBw7Mt7/97Vx//fWZPXt2lixZ0njfggULdlo7aNCg/MVf/EUOP/zwVp4SYN80DUWgaSgKTUORaBqgUmgaikDTUAR6hiLRM8VX1fDW64cCTTZ9+vTcc889mTlzZurq6na6r1OnThk6dGjOO+88r8ihLC6//PLGj7t165bTTz89Z5xxRgYNGlTGqWBXq1evzl/8xV9k8+bNOfvss/PpT386HTp0aDyHv//97ze+CufZZ5/NDTfckDfeeCO1tbW5/vrrXeqcspk1a1aefvrpzJs3L2vXrk19fX1qa2tz9NFHZ+TIkU1+tRlAOWka2jJNQ1FoGopK0wCVQNPQlmkaikDPUFR6pphsUIMDVF9fn9dffz3r169Psv1SkYcffvg+d5hDKX3sYx/LqFGjMmbMmAwfPtz5SJv28MMP57rrrkuS9OrVKyNGjMh9992XZPt7yjc0NOSll17Kq6++miSpqqrKF7/4RX+xBAAtRNPQFmkaikTTAEB5aRraIk1DUegZoLXYoAZQgerq6tKpU6dyjwFN9thjj+Wmm27Khg0b9rquS5cuufLKKzNq1KhWmgwAgHLQNBSNpgEA4K00DUWiZ4DWYIMaANAmrFu3Lvfcc0+mTZuWBQsWpL6+vvG+I488MiNHjsz48eNz6KGHlnFKAACA3dM0AABAUekZoNRsUINm2rx5c5Kkc+fOu73/rrvuyuOPP55169alT58+OffcczNy5MjWHBGg8Orr67N+/frG94yvqakp90iwk40bN2bZsmXZuHHjTqG+J0OHDm2FqQCaRtMAlJ6moa3TNECRaRqA0tIztHV6pphsUINmePrpp/OP//iP6dKlS374wx/moIMO2un+G264IVOmTNnluCuuuCIXX3xxa40JAJRAQ0NDJk+enHvvvTevvPJKk4+rqqrKxIkTSzgZQNNpGgBovzQNUAk0DQC0T3qm+Gx1hWb4wx/+kCQZOXLkLtEza9asxujp3Llz+vXrlyVLlqSuri6//vWv8+53vzsDBgxo9ZkBgAO3devW/OM//mOeeeaZZh/r9SBAW6JpAKB90jRApdA0AND+6JnKYIMaNMOcOXOSJCeccMIu902aNClJ0rNnz3zzm99Mr169smLFinz1q1/NypUrM2nSpHzqU59q1XkB2rrVq1fnl7/8ZZLtr2Ls2bPnXtevWrUqEydOTFVVVT760Y+mtra2NcaE3H777Y3h07t374wdOzYDBw7MwQcfnOrq6vIOB9AMmgagZWkaikLTAJVC0wC0HD1DUeiZymCDGjTDmjVrkiT9+/ff5b4dXxDPP//89OrVK8n2L47nn39+fvGLX2TmzJmtNidAUTz00EOZMmVKBg4cuM/wSbb/5dIrr7ySBQsW5B3veEfGjx/fClPC9nM1SQYPHpyvfOUr6dSpU5knAtg/mgagZWkaikLTAJVC0wC0HD1DUeiZymArITTD2rVrk2SXy0YvWrQo69atS5KccsopO9137LHHJkmWL1/eChMCFMuOS/KfeuqpTT7mtNNOS5L9uowv7K9ly5YlST74wQ8KH6DQNA1Ay9I0FIWmASqFpgFoOXqGotAzlcEGNWiGHZeHXL9+/U63z5o1K0nSrVu3XV6107Vr1yTJli1bWmFCgGJZtGhRkmTQoEFNPmbHXyi98sorJZkJdmfH9/Mdr74FKCpNA9CyNA1FoWmASqFpAFqOnqEo9ExlsEENmmHHpU0XLFiw0+3Tp09PkgwZMmSXYzZs2JAkOeSQQ0o7HEAB7XhVY7du3Zp8zI6vp2//SygopYEDByb531fpABSVpgFoWZqGotA0QKXQNAAtR89QFHqmMtigBs2wI2zuvvvuxstIz507t/ESpu9617t2OebVV19NknTv3r1VZgQoki5duiT5378kaoqNGzcmSWpqakoyE+zOeeedlyS5//77yzwJwIHRNAAtS9NQFJoGqBSaBqDl6BmKQs9UBhvUoBne9773paqqKsuWLcvnPve5/N3f/V2+9rWvpb6+PrW1tTn99NN3Oeb5559Pkhx55JGtPS5Am7fjUryzZ89u8jEvvfRSkv99tSS0hhEjRuT888/PjBkz8vOf/zz19fXlHglgv2gagP+fvTuPq7rO+///PIdFBERARDRUNDcIKZdMLYW00ihtUcdma5pmqstslpq1qymzpmmZmmkmw6mupmumfnPp2D4umRmiZWou5AJm7pQrIgKiHuDw+8MvpwjEc+yc8znvz3nc/xn4nM+b28vbGPDw9v68j3/RNDAFTQPALmgaAPAfegamoGfsgW2tgA969+6t733ve3rllVd08uRJ7dq1S5IUERGhO+64Q+3bt292f21tredY6QsuuCDo8wLeKioqknT6WN7BgwdbPA3CSVZWlsrKyvTOO+/oqquuUmxsbJv319bW6p133vGsBYLphz/8oTp37qw5c+Zo9erVGjZsmLp27ap27dqddW1ubm4QJgSAs6NpYFc0DaxC08AkNA0AO6BpYFc0DaxAz8Ak9Iz52KAG+Ojaa69VTk6OVq1apcrKSiUmJuqyyy5Tt27dWty7ZcsW9enTR5L4ZRIhraCgwPNxt27ddOONN+qyyy6Tw+GwcCqEgyuvvFKLFy/W0aNH9dhjj+mee+4541H7lZWV+tOf/qSjR4/K4XDoyiuvDO6wCHsul0s1NTWKiIhQeXm5Fi5c6NU6h8NB/AAIKTQN7IimgVVoGpiEpgFgFzQN7IimgRXoGZiEnjGfo7GxsdHqIQAA1po6dWqLa2lpabrhhhuUl5cX/IEQVv7xj394fols166dRo4cqQEDBigpKUmSdPToUZWWluqjjz7SqVOnJEnjx4/XD3/4Q8tmRvg5deqUfv/73/t01PlXzZ07188TAQCAr6JpYCWaBiagaQAACG00DaxCz8AE9Iw9sEENAKB58+ZJOr3zfNu2bdq+fbvq6+sl8QMbged2u/Xcc89p2bJlXt0/ZswY3X777Tw5hqB67bXX9O9//1uS1LdvX11xxRXq2bOn4uLivPq72Llz50CPCABAWKNpYCWaBiagaQAACG00DaxCz8AE9Iw9sEENANBCXV2dPvvsM5WWlmrSpElWj4MwsXbtWr311ltnfPqhf//+uu666zRkyJAgTwZId999t/bt26dBgwbp17/+tZxOp9UjAQCANtA0sAJNg1BG0wAAYBaaBsFGzyCU0TP2wAY14Bs6dOiQqqur5XK5dLb/nLKysoI0FQCYq6amRrt371ZVVZUkKSEhQRkZGYqPj7d4MoSz733ve6qrq9N9992nnJwcq8cBAL+iaQDAv2gahCKaBoCd0TQA4D/0DEIRPWMPkVYPAJho3759ev3117Vu3TrV1tZ6tcbhcGjOnDkBngwAzBcfH6/s7GyrxwCaiYuLU2VlpTp06GD1KADgFzQNAAQOTYNQRNMAsBuaBgACg55BKKJn7IENaoCP1qxZo2eeeUYul8undRxWiGAqKCiQw+HQTTfdpKSkJK/WVFVV6ZVXXpHD4dC0adMCPCEAmOX888/XunXrtH//fvXq1cvqcQDgG6FpYAKaBgD8i6YBYCc0DUxA0wCA/9Az9sAGNcAH5eXlnuhJTk7WhAkT1K5dOz3//POSpPvvv181NTXauXOnli9frqNHj2rAgAGaMmUK74OMoCoqKpIkTZgwwevwqa2t9awjfBBK1q5dq48++kjV1dVKTU3VmDFj1Lt3b6vHQpjJz8/XunXr9M4772jEiBFyOBxWjwQA54SmgSloGtgJTYNQQNMAsAuaBqagaWAX9AxCAT1jD2xQA3ywaNEiuVwuxcTE6JFHHlFycrLKyso8rzcddzp8+HBNnjxZs2fP1sqVK/X+++/rpz/9qVVjA0DI2rx5s55++mlFRUXpySefVFxcXLPX58yZozfeeKPZtaVLl2ratGkaPXp0MEdFmMvOzta3v/1t/d///Z+efvpp3X777S3+vgKACWgaAPAvmgamoGkA2AVNAwD+Q8/AFPSMPbBBDfDBpk2bJEnjxo1TcnJym/dGR0frJz/5ifbv368PP/xQw4YN0/Dhw4MxJnBO6urqJElRUVEWT4JwsmHDBlVXV+viiy9u8Yvknj17moVPXFycjh8/Lrfbreeff14DBgxQampqsEdGmHr11VclSX369NGqVau0YcMG5eTkqGvXrmrXrt1Z10+ePDnQIwKAV2ga2BlNAyvQNDAFTQPALmga2BlNg2CjZ2AKesYe2KAG+ODw4cOSpH79+nmuffX4yIaGBkVERHg+dzqduvrqq1VQUKDCwkLCByHt008/lSR17NjR4kkQTrZu3SpJysnJafHau+++K+l09Nx///3q1auXduzYoT/84Q+qqanRkiVL9N3vfjeo8yJ8zZs3r9nnp06d0scff+z1euIHQKigaWBnNA2sQNPAFDQNALugaWBnNA2CjZ6BKegZe2CDGuCDkydPSpJSUlI816Kjoz0f19bWqkOHDs3WdO/eXdLpXeZAoDTtGv+6xYsXnzVk6urqdPDgQa1du1aS1L9/f7/PB5xJZWWlJCk9Pb3Fa+vXr5ckjR8/Xr169ZIknX/++Ro3bpxee+01z9OSAADAezQNQhVNA1PRNAAABBdNg1BF08BE9AyAYGKDGuCD2NhY1dTUyOVyea59NXQOHjzYInxqa2slSdXV1cEZEmHp67vGmzQ93eCtqKgoTZw40R8jAV6pqqqSpBZHRx84cEAVFRWSpGHDhjV7LTMzU9Lp77lAsMydO9fqEQDAL2gahCqaBqaiaWAKmgaAXdA0CFU0DUxEz8AU9Iw9OK0eADBJt27dJEmHDh3yXGvfvr3nSZ1PPvmkxZqNGzdKOh1NQCiKiopSamqqLrvsMv3+979XRkaG1SMhjDQ2Nkr68h+JmjQdKx0bG9vi72TTPzCdOnUq8AMCAGAzNA3siKaBlWgaAACCi6aBHdE0sAo9AyCYOEEN8EG/fv20bds2bdu2TZdddpnn+pAhQ7R48WK9/fbb6t+/v7KzsyVJK1eu1MKFCyVxHC8C6+u7xqdOnSpJeuqpp1o9lhcIFYmJiTp8+LC++OILz1M3klRcXCyp9e+dTcf4f/2JHgAAcHY0DUIVTQNT0TQAAAQXTYNQRdPARPQMgGDiBDXAB4MGDZIkrVmzRm6323N94sSJio6O1smTJ/Xwww/rRz/6kW6++Wb95S9/UV1dnZxOJ8fxIqhSUlKUkpKiyEj2ISO09e3bV9LpY86bnrY5ePCg1q5dK0nKyclpsWb//v2STocTAADwDU0DU9A0MAVNAwBAcNE0MAVNAxPQMwCCiZ+IgA8uuOACTZ48WQ0NDaqoqPAcGZ2SkqJ77rlHf/3rX1VbW6uamhrPmsjISN12223q16+fVWMjDD377LNWjwB4ZezYsVq5cqX27NmjX/ziF+rVq5dKS0tVV1en6OjoZk9BNiktLZUkde3aNdjjAgBgPJoGpqBpYAqaBgCA4KJpYAqaBiagZwAEk6Ox6Y2FAXxj1dXVWrVqlcrKyuR2u5WWlqaRI0cqOTnZ6tEAIGT97//+rxYtWtTi+o9+9CNdddVVza65XC7dcccdqq2t1Q9/+EONHz8+WGMizDUdyX8uHA6H5syZ48dpACBwaBoA8B1NAxPQNADCBU0DAL6hZ2ACesYeOEEN8KMOHTroyiuvtHoMoJn9+/erqKhIn332mSorK+VyuXTfffcpLS3Nc8/evXtVXl6umJgYZWVlWTgtwtEtt9yigQMH6qOPPtKxY8eUmJio3NxcZWdnt7h37dq1io2NVWxsrIYMGWLBtIDveB4EgEloGoQimgahjqaB3dE0AExC0yAU0TQIZfQM7I6eCR1sUAMAm3K73XrllVe0aNEiud3uZq/V19c3+7y8vFyPP/64nE6nnn32WZ4mQ9ANGTLEq5gZOXKkRo4cGYSJgOYmT5581ntOnTqlffv2adOmTXK5XOrXr59ycnKCMB0AAPZE08AkNA1CHU0DAEDw0TQwBT2DUEfP2AMb1ADApp5//nkVFhZKkpKTk9W3b1+tXr261XsHDx6s1NRUHTp0SKtWrVJ+fn4wRwWAkDdlyhSv762urtbs2bO1fv16XXrppRxzDgDAOaJpAMB/aBoAAIKPpgEA/6Bn7IENaoAPSkpKfF7jcDgUFRWl2NhYpaamKjKS/+wQeJs2bfJEzw033KBvfetbcjqdbb4/9/Dhw/X2229r8+bNhA8AfAMdOnTQL37xC/33f/+3/vGPf+j8889X3759rR4LACTRNDAHTQMA1qFpAIQymgamoGkAwBr0TOjiNzDABzNnzvxG6yMiIpSRkaG8vDyNGTOGCELAvPfee5KkQYMG6aabbvJqTZ8+fSRJZWVlAZsLAMJFRESErr76as2ePVvz58/X3XffbfVIACCJpoE5aBoAsBZNAyBU0TQwBU0DANahZ0KT0+oBgHDS0NCgHTt26MUXX9Rvf/tblZeXWz0SbGrbtm2SpDFjxni9plOnTpKkysrKQIwEAGGnR48ekqRPP/3U4kkAwH9oGgQLTQMA1qNpANgRTYNgoWkAwFr0TOjhsQDABzNmzFB9fb3mzp2r7du3KykpScOHD9f555+vhIQESVJVVZV27NihVatW6ejRo+rTp4++9a1vyeVyqaysTCtXrlRZWZnKysr06KOP6oknnlBERITFfzLYTVVVlSQpNTXV6zVNfw/dbndAZgKAcONyuSRJ1dXVFk8CAF+iaWAKmgYArEfTAAhFNA1MQdMAgLXomdDDBjXAB1lZWXr88ce1fft2jR8/Xt/97ncVHR3d4r5Ro0bpu9/9rl5++WUtXrxYCxcu1L333quLL75YN954o+bMmaM33nhDn3/+uQoLC3XFFVdY8KeBnbVr10719fWeAPLGkSNHJEnx8fGBGgsAwsqaNWskyfOPowAQCmgamIKmAQDr0TQAQhFNA1PQNABgLXom9PAWn4APCgsLtX79eg0aNEg//OEPW42eJlFRUbr11ls1aNAgFRcXe95rXpJuuukmZWVlSfryGyPgT126dJEkff75516vKS4uliSlp6cHYiQACBsnT57Um2++qYULF0qSsrOzLZ4IAL5E08AUNA0AWIemARDKaBqYgqYBAGvQM6GLE9QAHxQWFkqST0/SXHHFFdqwYYOKioqarcvNzVVJSYn27Nnj9zmBnJwc7dy5U4sXL9b48ePldLa9H/nzzz/XsmXLJEmDBg0KwoQAYJaZM2ee9Z7GxkYdP35c+/btU319vSQpJiZGN954Y6DHAwCv0TQwBU0DAP5F0wCwC5oGpqBpAMB/6Bl7YIMa4IMvvvhCktSpUyev1zTd27S2SdPTDzU1NX6aDvjS1VdfrUWLFunAgQN64YUX9OMf/1gRERGt3rtx40YVFBSorq5O8fHxHGUOAK0oKSnxeU1KSop+8pOfqGvXrgGYCADODU0DU9A0AOBfNA0Au6BpYAqaBgD8h56xBzaoAT5wuVySTr8HfK9evbxa0/R+8XV1dc2uN/0S2tbx08C5SkxM1G233aZZs2bp/fff1yeffKLBgwd7Xl+4cKEaGxv16aefeqLc4XBo+vTpiomJsWpsAAhZmZmZcjgcbd7jcDgUExOj1NRUZWVlafDgwYqM5NdtAKGFpoEpaBoA8C+aBoBd0DQwBU0DAP5Dz9gD/28APkhLS9PevXv1/vvva+jQoV6tWbp0qWftVx09elSSlJCQ4N8hgf9n1KhRioiI0AsvvKAjR45oyZIlntea/l42iYmJ0fTp05vFEQDgSw8++KDVIwCAX9A0MAlNAwD+Q9MAsAuaBiahaQDAP+gZe2CDGuCDSy65RHv37tW6dev0z3/+U9/5znfOuOu2vr5e//rXv7R+/XpJ0vDhw5u9vnXrVkktgwjwp5EjR2rgwIFavHix1q1bp927d8vtdnteT09P19ChQ5Wfn6+OHTtaOCkAAACCgaaBaWgaAAAAfBVNA9PQNAAAnOZobGxstHoIwBQul0u/+tWvdODAAUlSp06dNHz4cPXu3dvzhE1VVZV27typVatWeY6NTktL0x//+EfPMdFut1s/+clPVF5erh/84AfKz8+35g+EsON2u1VTUyO32634+HiONYVxpk6dKkmKj4/Xtddeq6uvvprjzhEUM2fOlCSNHj1al19+ucXTAMC5o2lgOpoGpqNpYBWaBoBd0DQwHU0Dk9EzsAo9Yw9sUAN8dOTIET322GPau3evV/d3795dv/3tb5WSkuK5dvjwYS1btkySNHbsWCUnJwdiVACwnab4aRIXF6f8/Hzl5+crNjbWoqkQDr797W/L7Xbr/vvvV3Z2ttXjAMA3QtMAgHVoGliFpgFgJzQNAFiDnoFV6Bl7YIMacA4aGhq0ePFiLVmyRPv27Wv1nq5du+qKK67Q+PHjefoBAPxk+vTpkk4/KVlVVeW5Hhsbq5deesmqsRAG7rjjDlVWVuqxxx5Tr169rB4HAL4xmgYArEHTwCo0DQC7oWkAIPjoGViFnrEHfhsDzkFERIRnN3hFRYXKysp0/PhxSad3infv3p2nbRAy3G63Pv74Y23atEl79+5VTU2NpNPH73bv3l0DBw7UxRdfrIiICIsnBc7u2Wef9Xx86NAhlZSUqKSkRKWlpRZOhXCQkZGh4uJi7d+/n/gBYAs0DUxC08BOaBpYhaYBYDc0DUxC08Au6BlYhZ6xB05QAwAbW7t2rV588UVVVFS0eV9SUpJuvfVWDRs2LEiTAYBZVq9erT/96U/KysrSjBkzrB4HAICwQdMAgH/QNAAAWIOmAYBvjp6xBzaoAYBNLVy4UP/4xz+aXUtNTVXHjh0lSceOHdOhQ4eavX7zzTfrmmuuCdqMAGCSWbNmacWKFcrNzdWtt96qmJgYq0cCAMDWaBoA8C+aBgCA4KJpAMB/6BnzsUENAGzos88+0/3336/Gxka1b99eN954o/Ly8pSQkNDsvqqqKi1btkxvvPGGamtr5XQ69dBDD6lv374WTY5wM3PmTEnS6NGjdfnll1s8DXBmRUVFamxs1IIFC7R3717FxcVpyJAh6tmzp+Li4uR0Ottcn5ubG6RJAQCwB5oGpqBpYAqaBgCA4KJpYAJ6BqagZ+wh0uoBAAD+N3/+fDU2Nio2NlYPP/yw0tPTW70vISFBEydO1ODBg3X//fertrZW8+fP19133x3kiRGutm7dKrfbrUmTJlk9CtCmgoKCZp8fP35cy5cv92qtw+EgfgAA8BFNA1PQNDAFTQMAQHDRNDABPQNT0DP20PY2QgCAkbZu3SpJuu66684YPV+Vnp6u6667TpJUWloa0NmAr2p6WiwuLs7iSYDA4cBiAAB8R9PAFDQNwgFNAwCA72gamICeQTigZ0IHJ6gBgA3V1NRIki644AKv1zTde/z48YDMBLQmIyNDxcXF2r9/v3r16mX1OMAZzZo1y+oRAAAIKzQNTEHTwBQ0DQAAwUXTwAT0DExBz9gDG9QAwIaSkpJ0+PDhc14LBMuYMWNUXFysJUuWaOTIkVaPA5xR586drR4BAICwQtPAFDQNTEHTAAAQXDQNTEDPwBT0jD3wFp8AYEMDBw6UJJWUlHi9ZsuWLZKk7OzsgMwEtOaSSy7RqFGjVFJSooKCAp08edLqkQAAABACaBqYgqYBAABAa2gamICeARBMnKAGADY0YcIEffDBB3rzzTd18cUXq1u3bm3ev2/fPr311ltq166dJk6cGKQpAamoqEjZ2dnas2ePioqKtHbtWg0ZMkQ9e/ZUXFycnM6299Ln5uYGaVKEu5kzZ8rhcGjatGleP6lTUVGhZ555Rg6HQw888ECAJwQAwF5oGpiCpoEpaBoAAIKLpoEJ6BmYgp6xBzaoAYANdevWTb/4xS/0l7/8Rffdd58mT56s3NxcxcfHN7uvpqZGy5cv12uvvSZJuvvuu88aSYA/FRQUNPv8+PHjWr58uVdrHQ4H8YOgaXrS8dSpU16vcblcPj0hCQAAvkTTwBQ0DUxB0wAAEFw0DUxAz8AU9Iw9sEENAGxo5syZkqSEhAQdOHBA//znP/Xyyy8rNTVVHTt2lCQdO3ZMhw4dUmNjoyQpLS1Nb7/9tt5+++1Wvya7yxFqmv7uAgAAwH5oGoQDmgYAAMC+aBrYHT0DwFdsUAMAG2ptN3hjY6MOHjyogwcPtrrmwIEDOnDgQKBHA5qZNWuW1SMAAdP0JE90dLTFkwAAYB6aBqagaWBnNA0AAOeOpoEJ6BnYGT0TetigBgTQq6++KkmKj49XXl6eYmJiLJ4I4SIzM1MOh8PqMYCz8vZ94gETbdiwQZKUnJxs8SQAcO5oGliFpoEpaBrYGU0DwA5oGliFpoEJ6BnYGT0TehyNnL0IBMzUqVM9H8fHx+uaa67R1Vdfrfbt21s4FQAAOJuCgoJmnxcVFUmSLr74YsXGxra5tr6+XgcPHtT27dslSWPGjNEdd9wRmEEBIMBoGgAAzETTAMBpNA0AAOahZ+yJDWpAAH01fJrExsYqPz9fU6ZMsWAiAADgjdZ+hp+L+Ph4Pfroo0pNTfXL1wOAYKNpAAAwE00DAKfRNAAAmIeesSc2qAEBtGzZMkmSy+XStm3bVFpaqvLycknS3LlzLZwMAEKP2+3WmjVrtGnTJpWVlammpkbS6V8eu3fvroEDB2rYsGFyOp0WT4pwMH369GafN/38TkpKUkRExBnXORwORUVFKSkpSf369dNVV13F8dEAjEbTAID3aBqEEpoGAE6jaQDAO/QMQgk9Y09sUAOCrLy8XCUlJRo9erTVowBAyCguLtZzzz2nioqKNu/r1KmTbr/9dl100UXBGQz4f5qe1nnqqaeUnp5u8TQAYC2aBgBaomkQ6mgaAPgSTQMAzdEzCHX0jD2wQQ0AAFhq+fLlKigo0Fd/JencubMSExMlSZWVlTp8+LDnNYfDoenTp2vUqFHBHhVh7MEHH5TD4dCdd96pzp07Wz0OAAAAQghNAxPQNAAAAGgNPQMT0DP2wAY1AABgmcOHD+vnP/+56uvr1a5dO11//fUaO3asOnbs2Oy+qqoqLV26VG+++aZOnjypqKgoPf3000pJSbFocgAAAACgaQAAAACYi54BEEy8QTAAALDMwoULVV9fr5iYGD300EO68cYbW4SPJCUkJOiGG27QzJkzFRMTo7q6Oi1cuNCCiYG21dXVqbKyUm632+pRAAAAEAQ0DeyGpgEAAAgf9Azshp4JbZFWDwCYav/+/SoqKtJnn32myspKuVwu3XfffUpLS/Pcs3fvXpWXlysmJkZZWVkWTgsAoWnjxo2SpAkTJigjI+Os92dkZGjChAmaN2+ePvnkkwBPB3zpxIkTKi0tlSRlZWUpJiam2etVVVV6/vnntX79ejU0NCgmJkZjx47Vt7/9bUVFRVkxMgCcFU0DAN8cTQNT0DQA7IimAYBvhp6BKegZe2CDGuAjt9utV155RYsWLWqx87a+vr7Z5+Xl5Xr88cfldDr17LPPKjk5OZijAkDIKy8vlyTl5OR4vSYnJ0fz5s3zrAWCYfXq1Zo9e7aSk5P17LPPNnvN7Xbr0Ucf1c6dOz3XTp48qQULFujQoUP65S9/GexxAaBNNA0A+A9NA1PQNADshKYBAP+gZ2AKesYeeItPwEfPP/+8FixYILfbreTkZF1yySVnvHfw4MFKTU2V2+3WqlWrgjglAJih6R+QnE7vfyVpupfjeRFMTU+DDRs2rMXf15UrV3rCp1evXrrmmmvUq1cvSdLHH3+s4uLioM4KAGdD0wCA/9A0MAVNA8BOaBoA8A96BqagZ+yBDWqADzZt2qTCwkJJ0g033KBnn31W99xzT5trhg8fLknavHlzwOcDANM0PbH46aefer1m27ZtzdYCwVBWViZJ6t+/f4vXli9fLknq3bu3HnnkEd188836/e9/rz59+kiSli1bFrQ5AeBsaBoA8C+aBqagaQDYBU0DAP5Dz8AU9Iw9sEEN8MF7770nSRo0aJBuuukmr3aTN33ja/qmCQD40gUXXCBJevPNN1VRUXHW+ysqKvTmm282WwsEw7FjxyRJqampza7X19ertLRUkjRu3DhFRERIkiIjI3XllVdKknbs2BHESQGgbTQNAPgXTQNT0DQA7IKmAQD/oWdgCnrGHtigBvigaUf4mDFjvF7TqVMnSVJlZWUgRgIAo40fP14Oh0NVVVW67777tGrVqlaPhW46gv93v/udjh07JqfTqfHjx1swMcJVTU2NpNNR81U7duyQy+WSJF100UXNXuvataskfgcAEFpoGgDwL5oGpqBpANgFTQMA/kPPwBT0jD1Env0WAE2qqqoktdyZ25amXbq8DzdCWXl5uSSpffv2iouLs3gahJMePXpo6tSpmjNnjioqKvTnP/9ZcXFx6tWrlzp27Cjp9FMRu3bt0vHjxz3rpk6dqh49elg1NsJQu3btdOLECc9TOk2ansxJS0tTYmJis9eio6ODNR4AeI2mgV3RNLAKTQNT0DQA7IKmgV3RNLACPQNT0DP2wAY1wAft2rVTfX29J4C8ceTIEUlSfHx8oMYCvrHp06dLOr3rPDc3V9dff71PgQ98EzfccINiY2P1yiuvyOVy6fjx49q8eXOr90ZHR+v73/++rrrqqiBPiXDXpUsX7d69W1u2bNGFF17oub5mzRpJUmZmZos1Tb8vJCQkBGdIAPACTQO7omlgJZoGJqBpANgFTQO7omlgFXoGJqBn7IENaoAPunTpop07d+rzzz9XTk6OV2uKi4slSenp6QGcDPCP+vp6LV26VMuWLdOoUaN0ww03KC0tzeqxEAbGjRunESNGaNmyZdq0aZP27t3rOa43Pj5ePXr00MCBA5WXl8cvkrBETk6Odu/erXfffVeZmZnKzMxUYWGhduzYIUkaOnRoizV79uyRJCUnJwd1VgBoC00Du6NpYBWaBqGOpgFgFzQN7I6mgRXoGYQ6esYe2KAG+CAnJ0c7d+7U4sWLNX78eDmdzjbv//zzz7Vs2TJJ0qBBg4IwIXBuMjMz5XA45HK5tHv3btXX12vZsmVasWKF/vWvf1k9HsJEQkKCJk6cqIkTJ1o9CtBCfn6+lixZohMnTuixxx5r9lp6erqGDBnSYs2GDRskSRkZGcEYEQC8QtPArmgahAKaBqGMpgFgFzQN7IqmgdXoGYQyesYe2KAG+ODqq6/WokWLdODAAb3wwgv68Y9/rIiIiFbv3bhxowoKClRXV6f4+HhdccUVQZ4W8N6DDz7o+biurk6fffaZtmzZoq1bt1o3FACEkKSkJP3mN7/R008/rcrKSs/11NRU3XPPPXI4HM3uP3DggEpLSyVJAwcODOaoANAmmgZ2RdMAQNtoGgB2QdPArmgaADgzesYeHI2NjY1WDwGYZMWKFZo1a5YkqVOnTho8eLCWLFkiSRo7dqwaGxv16aef6osvvpAkORwO/frXv9bgwYMtmxkAQtX06dPldDp13333eX1MeXl5uR588EE5HA4988wzAZ4QaK6+vl5bt25VZWWlkpKSNGDAgFb/EXTr1q3atGmTJGnixIlq165dsEcFgDOiaQDAf2gamIamAWAHNA0A+Ac9A9PQM2bjBDXAR6NGjVJERIReeOEFHTlyxBM9krR06dJm98bExGj69OlEDwCcQXl5uaTTv1B6q76+XocPHw7USECbIiMjlZ2dfdb7BgwYoAEDBgRhIgDwHU0DAP5D08A0NA0AO6BpAMA/6BmYhp4xGxvUgHMwcuRIDRw4UIsXL9a6deu0e/duud1uz+vp6ekaOnSo8vPz1bFjRwsnBQAAAICWaBoAAAAAJqNpAAAAzMIGNeAcdejQQZMnT9bkyZPldrtVU1Mjt9ut+Ph4RUbynxYABEptba0kcRwvAADfEE0DANagaQAA8A+aBgCCj54BcK747QzwwV133SVJuvbaazV+/HjPdafTqYSEBKvGQhgrKioKyNfNzc0NyNcF/GHFihWSpM6dO1s8CcLV7t27tXXrVh08eFAnTpxo9nRuaxwOh6ZNmxak6QCgbTQNQg1Ng3BE08BqNA0Ak9E0CDU0DcINPQOr0TPmYoMa4IMjR47I7XYrIyPD6lEASVJBQYHfv6bD4SB8EDAzZ85s9XpBQcFZn7apr6/XwYMHdezYMUlSTk6O3+cD2rJv3z7Nnj1b27Zt83kt8QMgVNA0CDU0DUxD08BkNA0AO6BpEGpoGpiEnoHJ6BnzsUEN8EFiYqIqKioUHR1t9ShAwDQ2Nlo9AmyspKSk1es7duzw6eukpqbqhhtu8MdIgFcqKio0Y8YMVVVVea7FxMQoLi5ODofDwskAwDc0DcIBTYNAomlgKpoGgF3QNAgHNA0ChZ6BqegZe2CDGuCDvn37avXq1SorK1Pv3r2tHgfQrFmzrB4B8ElmZmazXxSbYqh3796KiYlpc210dLQSExPVv39/jRw58qz3A/70+uuve8JnzJgxmjBhgrp162bxVADgO5oGoYamgWloGpiKpgFgFzQNQg1NA5PQMzAVPWMPbFADfHDVVVdp9erVWrBggS699FJFRvKfEKzF+7vDNA8++GCzz6dOnSpJmj59utLT0y2YCPBOcXGxJCk3N1d33HGHtcMAwDdA0yDU0DQwDU0DU9E0AOyCpkGooWlgEnoGpqJn7MFp9QCASbKzs3X99ddrz549evzxx1VeXm71SABgtNGjRys3N1dxcXFWjwK06ejRo5JO/50FAJPRNADgXzQNTEHTALALmgYA/IeegSnoGXvgsQLAB6+++qqioqLUo0cPbdy4UT/5yU/Uv39/9ejRQ/Hx8XI6297zOXny5CBNCgBmmD59utUjAF6Ji4vTsWPHCHUAxqNpAMC/aBqYgqYBYBc0DQD4Dz0DU9Az9sAGNcAH8+bNa/a52+1WaWmpSktLvVpP+AAAYKbevXtrw4YN2r9/v3r16mX1OABwzmgaAADCE00DwC5oGgAAwg89Yw9sUAMAmztw4IDWrl2rPXv2qLq6Wi6XS42NjWe83+Fw6IEHHgjihAhne/fu1RNPPCGn06kHH3xQycnJbd5fUVGhGTNmSJLuvfdedevWLRhjAsrPz9eGDRv03nvvaeTIkVaPAwBAWKFpEMpoGpiCpgEAwDo0DUIVPQNT0DP2wAY1wAdz5861egTAa6dOndKLL76o5cuXtxk6gJWWL1+uw4cP68ILLzxr+EhScnKyunXrpuLiYq1YsUJTp04NwpSAlJOTo+uuu05vvfWWXnjhBf3whz9UZCS/SgMwD00Dk9A0MAFNA1PQNADsgqaBSWgahDp6BqagZ+yB/8cAwIYaGxv15JNPauPGjZKkDh06qFOnTtq9e7ckacCAAaqpqdG+ffvkdrslSd26dVNiYqJFEyNcNR29P3ToUK/XDB06VMXFxdq8eTPxg6ApKirSeeedp379+um9997TunXrNHz4cHXr1k3t2rU76/rc3NwgTAkAgH3QNDAFTQNT0DQAAAQXTQMT0DMwBT1jD2xQAwAb+uijjzzRM3nyZE2aNEmff/65fvWrX0mSZs6cKUk6efKkli5dqn//+9+qqanRHXfcoQEDBlg2N8LPvn37JEk9evTwek337t2brQWCoaCgoNnnR48e1aJFi7xa63A4iB8AAHxE08AUNA1MQdMAABBcNA1MQM/AFPSMPTitHgAA4H8ffPCBJKlfv36aMmWKnE6nHA5Hi/tiYmJ0zTXX6P7779eJEyf05JNPqqKiItjjIoydPHlS0um/i95qure2tjYgMwH+xvH9AAD4jqaBKWgahAOaBgAA39E0MAE9g3BAz4QOTlADABvauXOnJGns2LFe3d+nTx9dddVVWrBggRYtWqTvfve7gRwP8IiPj1dVVZUqKyu9XtN0b/v27QMzFNCKWbNmWT0CAABhhaaBKWgamIKmAQAguGgamICegSnoGXtggxrQirvuukvS6eMen3nmmRbXz8XXvxYQSNXV1ZKkLl26eK5FRER4Pna5XIqOjm62ZvDgwVqwYIHWr19P+CBo0tLSVFVVpeLiYl100UVerSkuLpbU/O83EGidO3e2egQA8AlNA9PRNDAFTQNT0DQATEPTwHQ0DUxAz8AU9Iw9sEENaMXhw4d9ug6EGqfz9Ds4f/Xpha9+XFlZqdTU1GZrYmNjJUnl5eVBmBA47cILL9S2bdu0dOlSXXHFFUpPT2/z/rKyMi1dulSSvI4lAADCEU0D09E0MAVNAwBAYNA0MB1NAxPQMwCCiQ1qQCtyc3N9ug6EmuTkZB04cEBVVVWea4mJiYqOjpbL5dLOnTtbhM/+/fslSW63O6izIrxdddVVevvtt3Xq1Ck99NBDuuOOOzRkyJBW7127dq2ef/55z5Nl48aNC/K0AACYg6aB6WgamIKmAQAgMGgamI6mgQnoGQDBxAY1oBV33nmnT9eBUNOzZ08dOHBAe/fuVU5OjqTTx5f36dNHJSUlevfddzV8+HDP/fX19Zo/f76k08f5AsGSkJCg2267TbNmzdKxY8f0xBNPqEuXLhowYIASExMlnX6SrLS0VIcOHfKsu+222zyvAwCAlmgamI6mgSloGgAAAoOmgeloGpiAngEQTGxQAwAbys7O1urVq1VcXKxrr73Wc/3yyy9XSUmJtmzZogcffFDDhw/XqVOn9OGHH2rPnj2SpBEjRlg1NsLUqFGj1NjYqBdeeEEul0sHDx7UwYMHW723Xbt2+vGPf6zRo0cHeUqEi5kzZ0o6/Y9FDzzwQIvr5+LrXwsAAJwdTQOT0DQIJTQNAAChgaaBKegZhBJ6xt7YoAb4oOk935OTkz3vHX82brdbFRUVkqSUlJSAzQZ81bBhw/Tiiy9qy5YtOnjwoLp06SJJGj16tD788EMVFxertLRUpaWlzdZlZGQ0CyUgWEaPHq2cnBwtXLhQGzZs0N69ez2vORwOde/eXUOGDNH48eN5KgcBVVJS4tN1ADANTQNT0DQwDU2DUEHTALA7mgamoGlgEnoGoYKesTc2qAE+mD59uhwOh5588kmlp6d7tebQoUP62c9+JofDoTlz5gR4QuC0xMRE/d///Z8ktYj0X/7yl3rttddUWFioyspKSVJsbKxGjRqlm266SdHR0cEeF5B0+u/td77zHX3nO99RQ0ODampqJEnx8fGKiIiweDqEi8zMTDkcDq+vA4BpaBqYgqaBiWgahAKaBoDd0TQwBU0D09AzCAX0jL05GhsbG60eAjDF1KlTJUlPPfWU1+Fz4MAB/exnP5MkzZ07N2CzAeeipqZGDQ0NSkhI4Ic6AABAGKBpYDc0DQAAQHihaWA3NA0AIFxwghoQJN4eNQ0EU3x8vNUjAAAAwBA0DUIRTQMAAABv0TQIRTQNACBc8JsYEGBHjx6VJMXExFg8CQAAAAD4jqYBAAAAYDKaBgAAwHqcoAYESH19vQ4ePKjXX39dktStWzeLJwKA0LZ582Z9/PHH2rNnj6qrq+VyudTWO5E7HA4988wzQZwQAIDwQtMAgG9oGgAAQgtNAwDeo2cABBob1IA2TJ06tdXrv/jFL3z+WsOHD/+m4wA+q6qq0gcffKDS0lIdOnRIJ06ckNvtbnMNv1Ai2I4dO6ann35aJSUlVo8CAIDt0DQwHU0DE9A0AAAEDk0D09E0CHX0DIBgYYMaEAQjRozQNddcY/UYCDMffPCB/ud//kcnTpywehTgjOrr6/WHP/xBu3fvliRlZGQoKSlJGzZskCSNGjVKNTU12rVrlyorKyVJvXv3Vvfu3S2aGACA8ETTwAo0DUxA0wAAYAaaBlagaRDq6BkAwcQGNaANkydPbvb5q6++Kkm68sor1bFjxzOuczgcioqKUlJSkvr166e0tLSAzgl83ebNm5s9XZOSkqKePXsqNjZWTqfTwsmA5pYtW+YJn2nTpikvL09lZWWe+Lnrrrs8965Zs0Z///vf9fnnn+u6667jiUcAALxA08BUNA1MQdMAABBYNA1MRdPABPQMgGBigxrQhilTpjT7vCl8xo8fr/T0dCtGArzy5ptvSpJiY2P105/+VIMGDbJ2IOAMVq9eLUm66KKLlJeX1+a9w4YNU48ePXTvvfeqoKBAPXv2VNeuXYMwJQAA5qJpYCqaBqagaQAACCyaBqaiaWACegZAMLE9G/DBtGnTNG3aNCUnJ1s9CtCmHTt2SJK+9a1vET0IaXv27JF0+pjo1jQ2Njb7PC0tTVdffbVOnTqlhQsXBnw+AADshqaBKWgamIKmAQAguGgamIKmgQnoGQDBxAY1wAd5eXnKy8tTbGys1aMAbXK73ZKk/v37WzwJ0LaamhpJUmpqqudaZOSXB7yeOnWqxZqBAwdKkjZu3Bjg6QAAsB+aBqagaWAKmgYAgOCiaWAKmgYmoGcABBMb1ADAhtLS0iS1/osjEEqaQuerwdO+fXvPxxUVFS3WREVFnfE1AAAA2ANNA1PQNAAAAGgNTQMT0DMAgokNagBgQyNHjpQkffLJJxZPArQtJSVFknTs2DHPtcTERMXExEiStm/f3mJNWVmZJMnhcARhQgAAAFiBpoEpaBoAAAC0hqaBCegZAMHEBjUAsKFx48YpPT1dCxYs0I4dO6weBzijXr16SZJ27drV7HpmZqYkaeHChaqrq/NcP378uN566y1JUnp6epCmBAAAQLDRNDAFTQMAAIDW0DQwAT0DIJjYoAYANhQTE6N7771X5513nmbMmKH/+7//0549e+RyuaweDWhm4MCBkqQNGzY0u37VVVdJOh1Fv/zlL/Xyyy/rf/7nf/TLX/5S+/fvlySNHj06uMMCAAAgaGgamIKmAQAAQGtoGpiAngEQTI7GxsZGq4cAAARGWVmZHnroIVVVVXm9xuFwaM6cOQGcCvjS8ePH9etf/1qNjY164IEHlJaW5nntb3/7mwoLC1tdd+GFF+q3v/2tnE722iM0TZ06VZIUHx+va6+9VldffbXnWHQAAOA9mgahjqaBXdE0AAD4B02DUEbPwK7omdDEBjUAsKmFCxfq5Zdfltvt9nnt3LlzAzAR4Lv3339fS5cu1eeff66GhgZ17dpVo0ePVn5+viIiIqweDzijpvhpEhcXp/z8fOXn5ys2NtaiqQAAMAtNAzugaWAqmgYAgG+OpoHp6BmYip4JTWxQAwAbWr9+vR5//HFJp5+0GTBggHr27Km4uDg5HI6zrp8yZUqgRwQAW5s+fbokyeVyNXs6MjY2Vi+99JJVYwEAYAyaBgCsRdMAAPDN0DQAYB16JjRFWj0AAMD//vOf/0iSkpOTde+996pHjx4WTwQA4eXZZ5/1fHzo0CGVlJSopKREpaWlFk4FAIA5aBoAsBZNAwDAN0PTAIB16JnQxAY1ALChPXv2SJK+9a1vET0AYLHU1FSlpqYqLy/P6lEAADAGTQMAoYOmAQDAdzQNAIQGeiZ0OK0eAADgf263W5KUkZFh7SAAAAAAcA5oGgAAAAAmo2kAAGiOE9SAACopKZEkdejQQd27d7d4GoSTrl27aufOnTp+/LjVowCALTT9TO/Tp4+io6O9WuNyubR9+3ZJUlZWVsBmA4BAomlgFZoGAPyLpgEQrmgaWIWmAQD/oWfsgQ1qQADNnDnT83FOTo4mTZqkAQMGWDgRwsWll16qnTt3as2aNcrOzrZ6HAAw3syZM+VwOPTkk08qPT3dqzUVFRWedXPmzAnwhAAQGDQNrELTAIB/0TQAwhVNA6vQNADgP/SMPbBBDQiSjRs3auPGjbrgggs0efJkdukioMaPH6+PPvpI7733nnJycjR06FCrRwIA4zU2NgZ1HQCEGpoGwUTTAID/0TQAwh1Ng2CiaQDAv+gZ87FBDQig3NxcSaePj/zss89UXl6uLVu2aMuWLZo7d67F08HOKisrdccdd+i5557Tk08+qZEjR2rkyJHq2rWr2rVrd9b1KSkpQZgSAOytKXqcTqfFkwDAuaNpYBWaBgCsR9MAsAOaBlahaQDAWvRM6GGDGhBAd955Z7PPDx8+rC1btmjr1q0WTYRwMX369Gaff/jhh/rwww+9WssxpwDgH4cPH5YkxcbGWjwJAJw7mgZWoWkAwHo0DQA7oGlgFZoGAKxFz4QeNqgBQdS5c2fl5eUpLy/P6lGAM+KYUwCQysvLW71+9OhRxcTEtLm2rq5OBw8e9DyF2717d7/PBwBWoWlgApoGAGgaADgTmgYmoGkAhDt6xp4cjfyEAwDbWbZs2TdaT5wDCHdTp07129e64447NGbMGL99PQAAwgFNAwDfDE0DAIC1aBoAOHf0jD1xghoA2BDhAgDWi4qK0tVXX034AABwDmgaALAeTQMAwLmjaQDAWvRM6OEENeAcud1ubdmyRdu2bVNlZaVOnTqlb3/720pKSvLcU19fr4aGBjmdTkVFRVk4LQAA8MXXn3CcPXu2pNNP7SQnJ59xncPhUFRUlJKSktSrV6+zHjUNAFaiaQAAsC+aBkA4oGkAALAnesaeOEENOAfr1q3TSy+9pMOHDze7PnHixGbhs3TpUv39739XTEyMnnvuOb4BAsA3NHPmTElShw4ddO2116pfv34WTwS7+voTjk3xM2zYMKWnp1swEQD4F00DANagaRAsNA0Au6NpACD46BkECz1jT2xQA3z03nvv6YUXXvB83qFDB1VXV7d679ixYzVnzhzV1tZqzZo1Gj16dLDGBABbKikp8Xy8evVqZWdna/LkycrMzLRwKoSDGTNmSJJSU1MtngQAvjmaBgCsQ9PAKjQNADuhaQDAGvQMrELP2AMb1AAf7N+/Xy+++KIkKTs7W7feeqvOO+88TZ06tdX7IyMjdckll6iwsFAbN24kfOB3r776qufjyZMnt3r9XHz1awGhbPPmzdq8ebOysrI8v5wCgZCVlWX1CADgFzQNQg1Ng3BH0yBYaBoAdkHTINTQNAhn9AyChZ6xBzaoAT5YsGCB3G63unfvrnvvvVeRkWf/TygzM1OFhYXatWtXECZEuJk3b57n46/GylevnwvCB6Fq1qxZkiSXy6Vt27aptLRUW7ZsafbUDmCV3bt3a9WqVaqurlZqaqpGjRql5ORkq8cCgGZoGoQamgbhhqZBKKNpAJiApkGooWkQTugZhDJ6JvSxQQ3wwebNmyVJ+fn5XkWPJKWlpUmSjhw5ErC5ACBcdO7c2fPxeeedp8svv1ySVFFRYdVICBPbt2/Xiy++qIiICN17772Ki4tr9vqSJUv04osvqrGx0XPt9ddf1y9+8Qvl5OQEe1wAOCOaBgCsRdPAKjQNALugaQDAOvQMrELP2AMb1AAfNMVLRkaG12vatWsnSTp16lQgRkKYmzt3rk/XAbviCQgE2rp167Rz507l5OS0CJ9Dhw7ppZdeahY+knTy5En9+c9/1l/+8hclJCQEc1wAOCOaBqGGpgFOo2kQaDQNALugaRBqaBqAnkHg0TP24LR6AMAkDodDkm8RU1NTI0mKjY0NyEwAYLJXX31Vr776qoqLi60eBWhT0xHlF110UYvX3nnnHTU0NCg6Olq/+MUv9L//+7+6++67FR0drdraWr377rtBnhYAzoymAQD/omlgCpoGgF3QNADgP/QMTEHP2AMb1AAfNO3+PnjwoNdrtm7dKknq0qVLQGYCAJPNmzdP8+bNU319vdWjAG1qOqK8Z8+eLV5bu3atJOmKK67QsGHD1L59ew0fPlxXXnmlJOmTTz4J3qAAcBY0DQD4F00DU9A0AOyCpgEA/6FnYAp6xh7YoAb4ICsrS5JUVFTk1f21tbVasmSJJCk7OztgcwGAqeLj4yVJKSkpFk8CtK2qqkrSl39nm1RUVHj+QXTEiBHNXsvJyZEkffHFF0GYEAC8Q9MAgH/RNDAFTQPALmgaAPAfegamoGfsgQ1qgA+adtmWlJRo2bJlbd5bXV2tP/7xj6qsrFRERIRnLQDgS2lpaZKkyspKawcBzqLpCbKvv31EaWmpJKldu3bq06dPs9cSExMlSSdOnAj8gADgJZoGAPyLpoEpaBoAdkHTAID/0DMwBT1jD5FWDwCYpFevXsrPz9fChQs1e/ZsbdiwQZdcconn9U8//VS7d+/W1q1b9eGHH6q2tlaSNGnSJHXu3NmqsRHGPv/8c7333nvaunWrDh48qJMnT8rtdre5xuFwaM6cOUGaEOFu5MiR2r59u1auXNnq+8YDoSIhIcHzJE7//v091zdu3ChJ6tu3r5zO5s9+uFwuSVJcXFzwBgWAs6BpYBqaBqGOpoEpaBoAdkHTwDQ0DUIZPQNT0DP2wAY1wEc333yz6urqtGTJEq1atUqrVq3yvPb888+3uD8/P1+TJk0K5oiAJGn+/Pn617/+pYaGBp/WNTY2BmgioKVx48apqKhIy5cvV1ZWlvLy8qweCWhV7969VVFRoffff1+XXXaZnE6nqqurtWbNGknSwIEDW6xpOla6Y8eOQZ0VAM6GpoEpaBqYgKaBKWgaAHZC08AUNA1CHT0DU9Az9sAGNcBHDodDP/7xjzVs2DC9+eabKikpafUXxX79+unGG2/UoEGDLJgS4a64uFgvv/yy5/O+ffuqd+/eio+Pl8PhsHAyoLnKykr913/9l2bPnq3Zs2frgw8+0GWXXaYePXooPj6+xdMOX5eSkhKkSRHucnNztXbtWpWWluqBBx5Qv379tG7dOtXW1ioiIkKXXXZZizWffvqpJKlLly7BHhcA2kTTwAQ0DUxB08AUNA0AO6FpYAKaBiagZ2AKesYe2KAGnKOcnBzl5OToxIkT2rVrl6qqquR2uxUfH6+MjAwlJCRYPSLC2IIFCySdPrL017/+tQYMGGDxREDrpk+f3uzzTZs2adOmTV6t5ZhzBNOwYcN0ySWXaPXq1frss8/02WefeV6bOHFiixB3u92eJ3f4HgwgVNE0CGU0DUxB08AUNA0AO6JpEMpoGpiAnoEp6Bl7YIMa8A21b99eWVlZVo8BNLNz505J0uTJk/mhC9vimHME289//nO9++67+uijj1RZWamkpCTl5ubq8ssvb3Hvhx9+qGPHjkmSBg8eHOxRAcAnNA1CEU2DcEDTINhoGgB2RdMgFNE0sDt6BsFGz5jP0ch3DgCwne9973uqq6vTo48+qt69e1s9DnBGy5Yt+0br8/Ly/DIHAAAAQgtNA1PQNAAAAGgNTQMT0DMAgokT1ADAhpKTk3Xw4EHV19dbPQrQJuIFAAAAraFpYAqaBgAAAK2haWACegZAMLFBDTgHDQ0NWr9+vUpLS3Xo0CGdOHFCbre7zTUOh0MPPPBAkCZEuBsyZIgWLlyorVu3ql+/flaPAwAAgBBD0yDU0TQAAABoC02DUEfTAADQHBvUAB9t3bpVzzzzjMrLy60eBTijCRMmaPny5Zo/f75Gjx6txMREq0cCAABAiKBpYAKaBgAAAGdC08AENA0AAM05GhsbG60eAjDFF198od/+9rdyuVySpMjISKWlpSk+Pl5Op/Os62fMmBHoEQGPTz/9VH/84x8VExOjW2+9VYMHD7Z6JOCsKisrVVJSor1796qmpkaSFB8frx49eigrK4uIR8Ddddddkk4/UfvMM8+0uH4uvv61AMBKNA1MQtPARDQNrEbTALA7mgYmoWlgGnoGVqNn7I0T1AAfvPHGG3K5XHI6nZoyZYry8/MVExNj9VhACzNnzpR0+pfG/fv36/HHH1dcXJy6du2q6OjoNtdyzDmscPToUf3jH//QmjVr1NDQ0Oo9ERERuuSSS3TzzTcrKSkpyBMiXBw+fNin6wBgGpoGpqBpYBqaBqGCpgFgdzQNTEHTwCT0DEIFPWNvbFADfLB582ZJ0tVXX60bb7zR4mmAMyspKWlx7fjx49q+fbsF0wBt2717tx5++GHP0zhn0tDQoJUrV2rTpk164IEH1KNHjyBNiHCSm5vr03UAMA1NA1PQNDAJTYNQQtMAsDuaBqagaWAKegahhJ6xNzaoAT6orq6WJA0bNsziSYC2ZWZmyuFwWD0GcFYnT57UY4895gmfgQMHauzYserbt6/nqOjKykpt375dS5cu1caNG1VdXa1HH31UTz/9tNq1a2fh9LCjO++806frAGAamgamoGlgCpoGoYamAWB3NA1MQdPABPQMQg09Y29sUAN8kJCQoIqKirMevQtY7cEHH7R6BMAr77zzjo4ePSqHw6Hbb79dY8aMaXFPSkqKUlJSNHz4cL3//vt67rnnVFFRocWLF2vixIkWTA0AgLloGpiCpoEpaBoAAIKLpoEpaBqYgJ4BEExOqwcATNK/f39JUllZmcWTAIA9rF27VpKUl5fXavh83ZgxY3T55ZdLktasWRPQ2YCvKi8vV3l5udxut9dr3G63Zx0AhAqaBgD8i6aBKWgaAHZB0wCA/9AzMAU9Yw9sUAN8cO2118rpdGrhwoVqaGiwehwAMN7+/fslSSNHjvR6zaWXXtpsLRAM06dP11133aV9+/Z5vebQoUOedQAQKmgaAPAvmgamoGkA2AVNAwD+Q8/AFPSMPbBBDfBBnz59dMstt2jPnj168sknVVVVZfVIAGC0kydPSpLi4+O9XhMXF9dsLRAsjY2NQV0HAIFA0wCAf9E0MAlNA8AOaBoA8B96BiahZ8wXafUAgEleffVVSacDaP369Zo+fboGDhyo8847T+3atTvr+smTJwd6ROCMDh06pOrqarlcrrP+IM7KygrSVAh3CQkJqqio0BdffKHevXt7tabp6YiEhIRAjgb4jdPJMyEAQgdNA5PRNAhFNA3CAU0DIJTQNDAZTYNQQ88gHNAzoYMNaoAP5s2b1+xzl8uldevWad26dV6tJ3wQbPv27dPrr7+udevWqba21qs1DodDc+bMCfBkwGl9+/bV6tWrNX/+fI0cOVIRERFt3t/Q0KD58+d71gKh7OjRo5KkmJgYiycBgC/RNDANTYNQR9PAzmgaAKGIpoFpaBqEMnoGdkbPhB62CgKATa1Zs0a/+c1vtGLFCq+jR+KYUwTX6NGjJUm7d+/WY489poqKijPeW1FRoccff1y7du2SJOXl5QVjRMBn9fX1+uKLL/T6669Lkrp162bxRAAAmImmgQloGtgRTQMAgH/QNAh19AzsiJ4JXY5GfsIBgO2Ul5fr7rvvlsvlUnJysiZMmKB27drp+eeflyTdf//9qqmp0c6dO7V8+XIdPXpUAwYM0JQpU+R0Ojk6GkH15JNP6uOPP5YkRUZGKicnR3379lVCQoIcDoeOHTumzz77TBs3blR9fb0kadiwYfrFL35h5diwualTp/rta33ve9/ThAkT/Pb1AAAIBzQNTELTIBTRNAAAWIumgSnoGYQiesaeeItPALChRYsWyeVyKSYmRo888oiSk5NVVlbmeT07O1uSNHz4cE2ePFmzZ8/WypUr9f777+unP/2pVWMjTP3sZz/TrFmztGrVKtXX12v9+vVav379Ge8fPny47rrrriBOCJy7ESNG6JprrrF6DAAAjEPTwCQ0DeyMpgEA4NzQNDAFPQM7o2dCCxvUAMCGNm3aJEkaN26ckpOT27w3OjpaP/nJT7R//359+OGHGjZsmIYPHx6MMQFJUlRUlO6++26tX79eixcvVklJiVwuV7N7oqOjlZWVpXHjxmnw4MEWTYpwMnny5Gafv/rqq5KkK6+8Uh07djzjOofDoaioKCUlJalfv35KS0sL6JwAANgVTQOT0DQIRTQNAADWomlgCnoGoYiesSc2qAGADR0+fFiS1K9fP881h8Ph+bihoUERERGez51Op66++moVFBSosLCQ8IElBg8erMGDB8vtduvgwYOqqamRJMXHx6tLly5yOp0WT4hwMmXKlGafN8XP+PHjlZ6ebsVIAACEFZoGJqJpEEpoGgAArEXTwDT0DEIJPWNPbFADABs6efKkJCklJcVzLTo62vNxbW2tOnTo0GxN9+7dJUl79uwJwoTAmTmdTnXt2tXqMYBmpk2bJofDcdanHQEAgH/QNDAZTYNQRNMAABBcNA1MRc8gFNEz9sAGNaAVTe+b7XA49Mwzz7S4fi6+/rWAQIqNjVVNTU2zI3i/GjoHDx5sET61tbWSpOrq6uAMCUgqKCiQw+HQTTfdpKSkJK/WVFVV6ZVXXpHD4dC0adMCPCFwWlFRkSTJ7Xbr8ssvt3gaADg7mgamo2lgCpoGpqBpAJiGpoHpaBqYgJ6BKegZe2CDGtCKpmN3vb0OhJpu3bpp27ZtOnTokOf46Pbt2yslJUXl5eX65JNP1KdPn2ZrNm7cKOl0NAHB0vQL5YQJE7yOn9raWs864gfBsnXrVrndbk2aNMnqUQDAKzQNTEfTwBQ0DUxB0wAwDU0D09E0MAE9A1PQM/bABjWgFbm5uT5dB0JNv379tG3bNm3btk2XXXaZ5/qQIUO0ePFivf322+rfv7+ys7MlSStXrtTChQslSf3797dkZgAIZQkJCaqsrFRcXJzVowCAV2gamI6mAQD/omkAmIamgeloGgDwH3rGHtigBrTizjvv9Ok6EGoGDRqk+fPna82aNbrlllvkdDolSRMnTlRhYaFOnjyphx9+WPHx8aqrq9OpU6cknX5f+YkTJ1o5OnBWdXV1kqSoqCiLJ0E4ycjIUHFxsfbv369evXpZPQ4AnBVNA9PRNLAzmgZWoGkAmIamgeloGtgVPQMr0DP24LR6AACA/11wwQWaPHmy8vLyVFFR4bmekpKie+65x3M8dE1NjSd6IiMjdccdd3iOmgZC1aeffipJ6tixo8WTIJyMGTNGkrRkyRKLJwEAIDzQNLAzmgZWoGkAAAgumgZ2Rc/ACvSMPTgaGxsbrR4CABBc1dXVWrVqlcrKyuR2u5WWlqaRI0cqOTnZ6tFgc6+++mqzz+fNmydJuuqqq84aM3V1dTp48KDWrl2ruro6XXrppfrpT38asFmBr5s1a5ZWrFih3Nxc3XrrrYqJibF6JAAAwhZNA6vQNDAZTQMAQOigaWAFegYmo2fMxwY1AAAQNFOnTvXL14mKitLvf/97ZWRk+OXrAWdTVFSkxsZGLViwQHv37lVcXJyGDBminj17Ki4uznNE/5nk5uYGaVIAAAAEEk0DU9E0AAAAoGdgKnrGHiKtHgAwSUlJic9rHA6HoqKiFBsbq9TUVEVG8p8dAJyLqKgoJSUlqV+/fpowYQLhg6AqKCho9vnx48e1fPlyr9Y6HA7iB0DIoGkAwDo0DaxE0wCwC5oGAKxBz8BK9Iw98BsY4IOZM2d+o/URERHKyMhQXl6exowZQwQBCDtz585t9nnT0zpPPfWU0tPTrRgJCDgOLAYQSmgaAPhmaBqEI5oGQCihaQDg3NEzCEf0TOjgty4giBoaGrRjxw7t2LFD7777rn77298qJSXF6rEAwDJN3wP5hyCEulmzZlk9AgCEBJoGAJqjaWAKmgYATqNpAOBL9AxMQc/Yg6OR7YKA10pKSlRfX6+5c+dq+/btSkpK0vDhw3X++ecrISFBklRVVaUdO3Zo1apVOnr0qPr06aNvfetbcrlcKisr08qVK1VWViZJSk9P1xNPPKGIiAgr/1gAAAAAwgRNAwAAAMBkNA0AAICZ2KAG+Ojxxx/X+vXrNX78eH33u99VdHR0q/fV1dXp5Zdf1uLFi3XRRRfp3nvv9bw2Z84cvfHGG5Kk2267TVdccUVQZgcAAAAAmgYAAACAyWgaAAAA8zitHgAwSWFhodavX69Bgwbphz/84RmjR5KioqJ06623atCgQSouLtZ7773nee2mm25SVlaWJGnNmjUBnxsAQlVlZaUKCgpUUFCgioqKs95fUVGhgoICzZ49WzU1NUGYEAAAe6FpAMC/aBoAAIKLpgEA/6FnAAQTG9QAHxQWFkqST0/SNN1bVFTU7Hpubq4kac+ePX6aDgDMs3z5chUVFWnPnj1KTk4+6/3Jycnas2ePli1bpuXLlwdhQgAA7IWmAQD/omkAAAgumgYA/IeeARBMkVYPAJjkiy++kCR16tTJ6zVN9zatbZKeni5J7C4HENY++eQTSdIll1zi9ZoRI0Zo9+7dKi4uVn5+fqBGA85o8+bN+vjjj7Vnzx5VV1fL5XKpsbHxjPc7HA4988wzQZwQAM6MpgEA/6JpYCKaBoDJaBoA8B96BiaiZ8zFBjXABy6XS5J05MgR9erVy6s1R44ckSTV1dU1ux4RESFJbR4/DQB2V1ZWJknq06eP12vOP/98STzZiOA7duyYnn76aZWUlFg9CgCcM5oGAPyLpoFJaBoAdkDTAID/0DMwCT1jPjaoAT5IS0vT3r179f7772vo0KFerVm6dKln7VcdPXpUkpSQkODfIQHAINXV1ZJ8+17YoUMHSTzZiOCqr6/XH/7wB+3evVuSlJGRoaSkJG3YsEGSNGrUKNXU1GjXrl2qrKyUJPXu3Vvdu3e3aGIAaB1NAwD+RdPAFDQNALugaQDAf+gZmIKesQc2qAE+uOSSS7R3716tW7dO//znP/Wd73xHkZGt/2dUX1+vf/3rX1q/fr0kafjw4c1e37p1q6SWQQQA4SQmJka1tbWqra31es2JEyck6Yzff4FAWLZsmSd8pk2bpry8PJWVlXni56677vLcu2bNGv3973/X559/ruuuu67F7wAAYCWaBgD8i6aBKWgaAHZB0wCA/9AzMAU9Yw981wB8MHHiRK1YsUIHDhzQggULtGrVKg0fPly9e/f27CyvqqrSzp07tWrVKs+x0WlpaZowYYLn67jdbn344YeSpAsvvDD4fxDga8rLyyVJ7du3V1xcnMXTIJx06tRJtbW12rZtm7Kysrxa8+mnn0qSkpOTAzka0Mzq1aslSRdddJHy8vLavHfYsGHq0aOH7r33XhUUFKhnz57q2rVrEKYEgLOjaWBXNA2sQtPAFDQNALugaWBXNA2sQM/AFPSMPbBBDfBBdHS0HnjgAT322GPau3evjhw5ogULFrS5pnv37vrtb3+r6Ohoz7UjR454vnGyYxehYPr06ZJOP+2Qm5ur66+/XqmpqRZPhXCQlZWlsrIyvfPOO7rqqqsUGxvb5v21tbV65513PGuBYNmzZ4+k08dEt6axsVEOh8PzeVpamq6++mq99tprWrhwoX70ox8FZU4AOBuaBnZF08AqNA1MQdMAsAuaBnZF08AK9AxMQc/Yg9PqAQDTdOrUSY899ph+8IMfqFu3bme8r2vXrvr+97+vxx57TCkpKc1e69y5s6ZMmaIpU6awuxwhpb6+XkuXLtXPf/5zzZ49WwcOHLB6JNjclVdeKUk6evSoHnvsMc/7wremsrJSjz32mI4ePSqHw+FZCwRDTU2NJDX7R6GvHmF+6tSpFmsGDhwoSdq4cWOApwMA39A0sDOaBsFG08AUNA0AO6FpYGc0DYKJnoEp6Bl74AQ14BxEREQoPz9f+fn5qqioUFlZmY4fPy5JiouLU/fu3QkaGCUzM1MOh0Mul0u7d+9WfX29li1bphUrVuhf//qX1ePBxrp37678/HwtXLhQn376qX76059q5MiRGjBggJKSkiSdDqPS0lJ99NFHnl8wx40bp4yMDAsnR7iJjIxUQ0NDs+Bp37695+OKiooW/yAaFRXleQ0AQg1NA7uhaWAVmgamoGkA2A1NA7uhaWAFegamoGfsgQ1qwDeUnJxM5MB4Dz74oOfjuro6ffbZZ9qyZYu2bt1q3VAIG9///vdVW1urZcuW6dSpUyosLFRhYeEZ7x8zZoxuueWW4A0ISEpJSdEXX3yhY8eOea4lJiYqJiZGJ0+e1Pbt21vET1lZmSQ1O1YaAEIRTQM7oGlgJZoGJqBpANgZTQM7oGlgFXoGJqBn7IENagCAZqKiopSVlcV7xyNonE6npk2bposvvlhvvfWWtm3b1up9/fv313XXXachQ4YEeUJA6tWrl7744gvt2rVLgwYN8lzPzMzUhg0btHDhQo0YMcLzRM7x48f11ltvSZLS09MtmRkAgHBF0yDYaBqYgKYBAMAcNA2CiZ6BCegZe2CDGgAACAlDhw7V0KFDVVNTo927d6uqqkqSlJCQoIyMDMXHx1s8IcLZwIED9cEHH2jDhg268cYbPdevuuoqbdiwQbt27dIvf/lLDR06VKdOndK6des8x0aPHj3aqrEBAAAQRDQNQhlNAwAAgLbQMwhl9Iw9OBobGxutHgIwTUNDg9avX6/S0lIdOnRIJ06ckNvtbnONw+HQAw88EKQJEe6KiookSRdffLFiY2O9WnPy5EmtXr1akpSbmxuw2QDARMePH9evf/1rNTY26oEHHlBaWprntb/97W9nPPL8wgsv1G9/+1s5nc5gjQoAXqFpEOpoGgDwL5oGgN3QNAh1NA0A+A89Yw9sUAN8tHXrVj3zzDMqLy/3ee3cuXMDMBHQ0tSpUyVJTz31lNfHlh44cEA/+9nP5HA4NGfOnECOBwC28/7772vp0qX6/PPP1dDQoK5du2r06NHKz89XRESE1eMBQDM0DUxA0wBAcNE0AExC08AENA0ABA89Ywbe4hPwwRdffKFHHnlELpdLkhQZGam0tDTFx8ez6xa2wb5lWMXtdmvLli3atm2bKisrderUKX37299WUlKS5576+no1NDTI6XR63kceCAVjxozRmDFjrB4DAM6KpkE4oGlgFZoGJqNpAJiCpkE4oGlgBXoGJqNnzMAGNcAHb7zxhlwul5xOp6ZMmaL8/HzFxMRYPRbgF03Hn7OLHFZYt26dXnrpJR0+fLjZ9YkTJzaLn6VLl+rvf/+7YmJi9Nxzz/E9GAAAH9E0sDOaBlaiaQAACA6aBnZG08Aq9AyAYOBRAsAHmzdvliRdffXVuvHGG/mhC1vZt2+fJCk+Pt7iSRBu3nvvPT3xxBOe8OnQocMZ7x07dqxiY2N18uRJrVmzJlgjAgBgGzQN7IymgVVoGgAAgoemgZ3RNLACPQMgWDhBDfBBdXW1JGnYsGEWTwI0V1JS0ur17du3q6qqqs219fX1OnDggP7zn/9IkjIyMvw9HnBG+/fv14svvihJys7O1q233qrzzjtPU6dObfX+yMhIXXLJJSosLNTGjRs1evToYI4LAIDxaBqEKpoGpqJpAAAILpoGoYqmgYnoGQDBxAY1wAcJCQmqqKhQdHS01aMAzcycObPV67Nnz/b5a11xxRXfdBzAawsWLJDb7Vb37t117733KjLy7L+aZGZmqrCwULt27QrChAAA2AtNg1BF08BUNA0AAMFF0yBU0TQwET0DIJh4i0/AB/3795cklZWVWTwJ4H/Jycn60Y9+xJNnCKqmI/nz8/O9Ch9JSktLkyQdOXIkYHMBAGBXNA3sjKaBFWgaAACCi6aBndE0CDZ6BkAwcYIa4INrr71Wq1ev1sKFC3XZZZcpIiLC6pEASdKMGTM8Hzc2Nuqhhx6SJE2bNk2pqaltro2OjlZiYqJSUlICOiPQmqaA8eXI8nbt2kmSTp06FYiRAACwNZoGoYqmgaloGgAAgoumQaiiaWAiegZAMLFBDfBBnz59dMstt+ill17Sk08+qWnTpikhIcHqsQBlZWW1er1Pnz5KT08P8jSA9xwOhyTfQqampkaSFBsbG5CZAACwM5oGoYqmgaloGgAAgoumQaiiaWAiegZAMLFBDfDBq6++Kun0L5Pr16/X9OnTNXDgQJ133nme3eJtmTx5cqBHBCRJs2bNknT6OGgglCUnJ2v//v06ePCgMjMzvVqzdetWSVKXLl0CORoAALZE08AUNA1MQdMAABBcNA1MQdPABPQMgGBigxrgg3nz5jX73OVyad26dVq3bp1X6wkfBEvnzp2tHgHwSlZWlvbv36+ioiLl5eWd9f7a2lotWbJEkpSdnR3g6QAAsB+aBqagaWAKmgYAgOCiaWAKmgYmoGcABJPT6gEAAED4uvLKKyVJJSUlWrZsWZv3VldX649//KMqKysVERHhWQsAAAAAVqFpAAAAAJiKngEQTJygBvhg7ty5Vo8A+OzEiRPatGmTdu/ererqarlcLjU2Np7xfofDoWnTpgVxQoSzXr16KT8/XwsXLtTs2bO1YcMGXXLJJZ7XP/30U+3evVtbt27Vhx9+qNraWknSpEmTeAINAIBzQNPARDQNQhlNAwBAcNE0MBFNg1BFzwAIJkdjWz/9AADGcrvdeu211zR//nydPHnSp7VEPoKpsbFRL774oudY6LPJz8/XD37wgwBPBQAAAKvRNDAFTQMAAIDW0DQwAT0DIFg4QQ0AbKqgoEArVqyQJDmdTsXHx6uqqkqS1KlTJx0/frxZECUkJCg6OtqSWRHeHA6HfvzjH2vYsGF68803VVJS0urTY/369dONN96oQYMGWTAl4JuZM2dKkjp06KBrr71W/fr1s3giAADMQ9PAFDQN7IimAQDgm6NpYAJ6BnZEz4QmTlADABsqLi7Wo48+KknKzc3VzTffrIqKCv3qV7+S9OWTN/v27dO7776rxYsXq0uXLvrVr36l8847z7K5Aen0cee7du1SVVWV3G634uPjlZGRoYSEBKtHA7w2derUZp9nZ2dr8uTJyszMtGgiAADMQtPAZDQN7ICmAQDgm6FpYCp6BnZAz4QmTlADztGmTZu0bNkybdu2TZWVlaqrq9OTTz6p9PR0zz0lJSUqKytT+/btNXr0aAunRbhZtmyZJKl79+668847JUlHjx5tcV+3bt10yy23KDs7W0899ZQeffRRPfHEE4qNjQ3muAhjBQUFkqRBgwZpxIgRkqT27dsrKyvLyrEAv9u8ebM2b96srKwszZgxw+pxAEASTYPQRtPAFDQNwgVNAyAU0TQIZTQNTEDPIFzQM6GBDWqAj06dOqVnn31Wq1evPuu9TqdTf//73yVJffv2VdeuXQM9HiBJ+uyzzyRJ48aN8+r+oUOHKjc3V4WFhVq4cKEmT54cyPEAj6KiIknSyJEjLZ4E8K9Zs2ZJklwul7Zt26bS0lJt2bJFJSUlFk8GADQNzEDTwBQ0DeyKpgEQymgamICmgQnoGdgVPROa2KAG+OjPf/6zNmzYIEnq06ePMjMz9Z///KfVewcMGKDu3burrKxMq1ev1vXXXx/ESRHOjh07JknNYtvpdHo+rqurU1RUVLM1w4cPV2FhoT7++GPCB0GTkJCgqqoqJSYmWj0K4FedO3f2fHzeeefp8ssvlyRVVFRYNRIAeNA0MAFNA1PQNLArmgZAKKNpYAKaBiagZ2BX9Exocp79FgBNVq1a5Yme22+/XY888oi+973vtblm2LBhksRuXFgiPj7e83H79u09HzeF0Vc1vXf8oUOHAj8Y8P80Hbd/+PBhiycBgiM5OdnqEQCEOZoGpqFpEOpoGoQbmgaA1WgamIamQSijZxBu6BlrsUEN8EHTMaejRo3S2LFjvVrTu3dvSdIXX3wRsLmAr+vYsaMkqaamptm1yMjTB2fu3bu3xZry8nJJp5/aAYJl1KhRkr78/goAAAKLpoEpaBqYgqYBACC4aBqYgqaBCegZAMHEBjXABzt37pTk2/twJyUlSZKqqqoCMhPQmh49ekiSPv/8c8+1iIgIZWRkSJIKCwtbrHn33XclNT/yFAi0yy+/XNnZ2fr444/173//W42NjVaPBACArdE0MAVNA1PQNAAABBdNA1PQNDABPQMgmCKtHgAwSXV1tSTfjn50OBySJLfbHZCZgNZccMEFWr9+vTZt2qTx48d7ro8aNUrbt2/XmjVrNGvWLI0cOVInT55UUVGRNm3aJEkaOnSoVWMjDJWWlmrChAmqqqrSa6+9po8++kgjRoxQz549FRcXJ6ez7b30WVlZQZoU4a7p6UVfRUdHKzY21vNkJABYjaaBKWgamIKmgSloGgB2QdPAFDQNTEDPwBT0jD3w/wLgg9jYWFVXV6uiosLzhMPZNL1PfNP7xgPBMGzYML388ssqLi5WZWWlEhMTJUlXXnmlli1bpl27dmnFihVasWJFs3UpKSm67rrrLJgY4WrmzJnNPt+3b59ee+01r9Y6HA7NmTMnEGMBLUyfPv0bre/UqZP69u2rvLw8DRo0yE9TAYDvaBqYgqaBKWgamIKmAWAXNA1MQdPABPQMTEHP2AMb1AAfdO3aVdXV1dqzZ48GDx7s1ZqPP/5YkrwOJcAfUlNT9cwzz8jtdis2NtZzPSIiQr/73e/00ksv6aOPPlJDQ4PntUGDBum2225TfHy8FSMDPuOoaZjkyJEjOnLkiFatWqWcnBz97Gc/4/stAEvQNDAFTYNwQNPAJDQNgFBB08AUNA3sjp6BSeiZ0MAGNcAHgwcP1rZt2/TOO+/ommuuUXR0dJv3l5aWauXKlZKkIUOGBGNEwCM1NbXV6/Hx8frJT36iH//4x9q/f7/cbrfS0tL4IQxLzJgxw+oRAK9MmzZNkrRkyRJt375dUVFRuvDCC3X++ed7nr6tqqrSjh079Mknn6iurk59+vTRFVdcoRMnTmjv3r1au3atqqurtXHjRv3xj39s8XQaAAQDTQOT0DQwAU0DU9A0AOyCpoFJaBqEOnoGpqBn7IENaoAPxo0bp/nz56uyslJ/+tOfdNddd7X6y2JDQ4MKCwv18ssvy+12KyUlRXl5ecEfGGhD+/bt1bt3b6vHQJjLysqyegTAK3l5eXr++ee1fft2DR06VLfffrs6duzY6r3Hjh3Tc889p3Xr1ql79+76r//6L0mSy+XSCy+8oOXLl2vr1q1auXKlRo4cGcw/BgDQNLAVmgahgKaBKWgaAHZB08BOaBpYjZ6BKegZe3A0cvYi4JNNmzbp0UcfVUNDg6Kjo5WVlaXi4mJJp4/era+v144dO1RbWytJioqK0oMPPqg+ffpYODUAAPgm1qxZo6eeekr9+vXTQw89JIfD0eb9jY2NeuCBB7Rt2zb97Gc/80SO2+3Wf//3f2vXrl0aOnSofvWrXwVjfABohqYBACD80DQA7ISmAQAgvNAz9uC0egDANAMHDtQDDzyglJQUuVwuT/RI0oYNG7Rp0yZP9HTq1EkzZswgehB0LpdLRUVFKioqUlVV1Vnvr6qq8txfX18fhAkBwCzvvvuuJCk/P/+s4SNJDodD+fn5kqSlS5d6rjudTo0dO1aStHPnzgBMCgBnR9PABDQNAPgXTQPATmgamICmAQD/oWfsgbf4BM7BgAED9Ne//lUffvih1q5dq507d+rYsWNyu93q0KGDMjIyNHToUOXl5Skykv/MEHwrV67U7NmzlZycrMsuu+ys98fFxWnOnDmqqKhQZGSkLr300iBMCQDm2LNnjyQpLS3N6zVN9+7du7fZ9Z49e0qSqqur/TQdAPiOpkGoo2kAwL9oGgB2Q9Mg1NE0AOA/9Iw98BsZcI4iIiI0evRojR492upRgBbWrVsnSRoxYoQiIiLOen9ERIRGjhyp+fPn6+OPPyZ84HcFBQWSTj+xMG3atBbXz8XXvxYQSCdOnJAkr552bNJ0b9PaJtHR0ZLk1fdnAAgkmgahjKZBqKFpYDqaBoAd0TQIZTQNQgk9A9PRM/bABjUAsKFdu3ZJkrKysrxek5mZqfnz53OcKQKiqKjI8/FXg+Wr188F8YNgSUlJ0f79+/Xhhx/qwgsv9GrNihUrPGu/6tixY5KkhIQE/w4JAICN0DQINTQNTEfTAAAQXDQNQgk9A9PRM/bABjUAsKGjR49Kkjp16uT1mqZ7m9YC/vT1X/7Odh0INUOHDtV//vMfFRUVqXfv3ho/fnyb9y9atMgTP0OHDm322meffSZJSk1NDcywAADYAE2DUEPTwHQ0DQAAwUXTIJTQMzAdPWMPbFADABtyOp2SpLq6Oq/X1NfXS5IaGxsDMhPC27PPPuvTdSDUXH/99SoqKlJVVZVeeuklrVixQqNGjVLv3r09T9lUVVVp586dWrFihbZv3y7p9BM4119/fbOvtXLlSknSwIEDg/pnAADAJDQNQg1NA9PRNAAABBdNg1BCz8B09Iw9sEENAGwoMTFRhw4dUllZmfr16+fVmr1790riOFMAaE18fLzuv/9+PfLII6qsrNT27ds9gXMmiYmJ+u///m/Fx8d7rh08eFB9+vRRnz59dMkllwR6bAAAjEXTAIB/0TQAAAQXTQMA/kPP2AMb1ADAhvr166dDhw5p6dKlGjt2rFdr3nvvPUlS3759AzkaABirR48e+vOf/6x///vfKioqUm1tbav3xcbGavTo0ZoyZUqz8JGkLl266M477wzGuAAAGI2mAQD/o2kAAAgemgYA/IueMZ+jkTNCAcB2NmzYoMcee0ySNH78eN1yyy1yOByt3tvY2Kj//d//1TvvvCNJ+uUvf6mLL744aLMCgInq6+u1Y8cOlZWVqaamRtLpJ3jS09N1/vnnKyoqyuIJAQAwG00DAIFF0wAAEFg0DQAEDj1jJjaoAYBNPfzww9q8ebMkqXfv3rr66quVmZmppKQkSdLRo0dVWlqqRYsWaefOnZKkrKwszZgxw7KZAQAAAKAJTQMAAADAZDQNAABfYoMaANhUTU2NHnzwQZWVlXl1f48ePTRjxowWR50C/jB16lS/f02Hw6E5c+b4/esCAAAgNNA0CCU0DQAAAHxF0yBU0DMAQoHT6gEAAIERHx+vP/zhD8rPz1d0dPQZ72vXrp2uueYaPfLII0QPjMIeewAAAHujaWB3NA0AAIC90TSwM3oGgK84QQ0AwkBtba02b96sXbt2qbq6WpLUoUMH9erVS9nZ2YqNjbV4QtjdvHnz2nx9/fr1niPM09PT1adPH3Xs2FGSdOzYMc/7yEvS+eefr0GDBkmSpkyZEsCpgdbt3r1bW7du1cGDB3XixAm53e4273c4HJo2bVqQpgMAwJ5oGliNpoGd0DQAAAQfTQMr0TOwE3rGXGxQAwAAlnr11Vc1b9489ezZU7fffrv69OnT6n3bt2/XCy+8oN27d2vKlCmaPHlykCdFuNu3b59mz56tbdu2+bx27ty5AZgIAAAAoYCmgSloGgAAAHwdPQNT0DPmi7R6AAAAEL42bdqkefPmqWvXrnrooYcUExNzxnv79OmjmTNn6je/+Y3mzZunfv36KScnJ4jTIpxVVFRoxowZqqqq8lyLiYlRXFycHA6HhZMBAADASjQNTEHTAAAA4OvoGZiCnrEHNqgBAXTXXXdJOn1E7zXXXKNLL72Ub5AA8BWLFi2SJF1//fVthk+TmJgYXX/99frb3/6md955h/hB0Lz++uue8BkzZowmTJigbt26WTwVAAQeTQMAbaNpYAqaBkC4omkA4MzoGZiCnrEHNqgBAXT48GHP/z7zzDN67bXXdMMNN+iyyy6T0+m0eDoAsN6OHTskST169PB6Tc+ePZutBYKhuLhYkpSbm6s77rjD2mEAIIhoGgBoG00DU9A0AMIVTQMAZ0bPwBT0jD3wmxcQRPv27dOzzz6rn//851aPAgAhoaamRpJUW1vr9ZoTJ040WwsEw9GjRyVJo0ePtngSALAWTQMAzdE0MAVNAwCn0TQA8CV6BqagZ+yBE9SAAJo7d64kyeVyadu2bSotLVVJSYm2b99u8WQAEBqSk5N16NAhrV69WtnZ2V6tWbVqlSQpKSkpkKMBzcTFxenYsWOKi4uzehQACCqaBgDaRtPAFDQNgHBF0wDAmdEzMAU9Yw9sUAOCIDo6WtnZ2Z4f7PX19RZPBACh4cILL9SSJUv03nvvKTMzUyNHjmzz/lWrVum9996TJA0aNCgYIwKSpN69e2vDhg3av3+/evXqZfU4ABB0NA0AtI6mgSloGgDhjqYBgJboGZiCnrEH3uITsEBkJHtDAUCSbrzxRrVv315ut1t/+ctf9MQTT2jNmjWqqKhQfX29GhoaVFFRoTVr1uiPf/yj/vznP8vtdqt9+/a64YYbrB4fYSQ/P1+SPPENAOGOpgGA02gamIKmAYDmaBoAoGdgDnrGHhyNjY2NVg8BmKKgoEDS6R3hI0aMsHgaALCH0tJSPf744zpx4oRX98fExOg3v/mNsrKyAjwZ0Ny//vUvvfXWW7riiiv0wx/+kH/IBGAkmgYA/I+mgSloGgB2QNMAgH/RMzAFPWM+NqgBPpg6daok6d5779VFF11k7TAAYCPl5eX65z//qY8//lhut7vVe5xOp4YOHaqbb75ZnTt3DvKECHdFRUWSTj+ds23bNiUlJWn48OHq1q2b2rVrd9b1ubm5gR4RALxC0wBAYNA0CHU0DQC7oGkAwP/oGYQ6esYe2FII+CAhIUFVVVVKTEy0ehQAsJWUlBTdc889qqys1JYtW7R3717V1NRIkuLi4tSjRw9lZ2fz/ReWaXo6t8nRo0e1aNEir9Y6HA7iB0DIoGkAIDBoGoQ6mgaAXdA0AOB/9AxCHT1jD2xQA3yQnp6ukpISHT58WBkZGVaPAwC2k5iYqEsvvVSXXnqp1aMAfsOBxQBCCU0DAIFF08COaBoAoYSmAYDAoWdgR/RM6GCDGuCDUaNGqaSkREVFRbr44outHgfwm5KSEklShw4d1L17d4unAYDQM2vWLKtHAAC/oGlgVzQNALSNpgFgFzQN7IqmAYAzo2fswdHIdkHAa42Njfr973+vzZs3a9KkSZoyZYocDofVYwHf2NSpUz0f5+TkaNKkSRowYICFEwEAACAQaBrYFU0DAAAQHmga2BVNAwCwOzaoAT4oKSmRy+XS//f//X/au3evunXrphEjRqhnz56Ki4uT0+lsc31WVlaQJgV889XwaXLBBRdo8uTJ/L0FAACwEZoGdkXTAAAAhAeaBnZF0wAA7I4NaoAPWvvl0FsOh0Nz5szx4zSA/xQUFEiSXC6XPvvsM5WXl3temzt3rlVjAQAAwM9oGtgVTQMAABAeaBrYFU0DALC7SKsHAMIFe0ERyu68885mnx8+fFhbtmzR1q1bLZoIAEKX2+3WmjVrtGnTJpWVlammpkaSFB8fr+7du2vgwIEaNmzYWZ/YBQDT0DQIZTQNAHiPpgEQrmgahDKaBgC8Q8+YixPUAB+UlJR8o/UcwQsAgNmKi4v13HPPqaKios37OnXqpNtvv10XXXRRcAYDAC/RNAAAhDeaBoDpaBoAAMIXPWM2NqgBAAAAXli+fLkKCgqaPW3buXNnJSYmSpIqKyt1+PBhz2sOh0PTp0/XqFGjgj0qAAAAALRA0wAAAAAwFT1jPjaoAQAAAGdx+PBh/fznP1d9fb3atWun66+/XmPHjlXHjh2b3VdVVaWlS5fqzTff1MmTJxUVFaWnn35aKSkpFk0OAAAAADQNAAAAAHPRM/bAm64CAAAAZ7Fw4ULV19crJiZGDz30kG688cYW4SNJCQkJuuGGGzRz5kzFxMSorq5OCxcutGBiAAAAAPgSTQMAAADAVPSMPURaPQAAwP8KCgp8XuNwOBQVFaXY2Fh17dpVffv2VXp6egCmAwDzbNy4UZI0YcIEZWRknPX+jIwMTZgwQfPmzdMnn3wS4OkAALAfmgYA/IumAQAguGgaAPAfesYe2KAGnKMDBw5o7dq12rNnj6qrq+VyudTWO+Y6HA498MADQZwQ4ayoqMgvX+f888/XzTffrAEDBvjl6wGAqcrLyyVJOTk5Xq/JycnRvHnzPGsBINTQNAhlNA0A+BdNA8COaBqEMpoGAPyHnrEHNqgBPjp16pRefPFFLV++vM3QAazU9D7aLpdLVVVVnuuRkZGKj4+XJNXU1Ki+vt7zWkJCgqKionTixAnV1tZKknbs2KEHH3xQ06dP16hRo4L4JwBaV1JSIknq0KGDunfvbvE0CCdut1uS5HQ6vV7TdG/TWgAIFTQNTEDTwK5oGliFpgFgJzQNTEDTwI7oGViFnrEHNqgBPmhsbNSTTz7pOUKyQ4cO6tSpk3bv3i1JGjBggGpqarRv3z7PN7pu3bopMTHRookRrp599lnt3r1bTz31lGprazVu3DiNHj1aPXr0aPbDeO/evSoqKtK7776rmJgY3X333erdu7cqKir0wQcf6LXXXtPJkyf1t7/9TZmZmZ6gAqwyc+ZMz8c5OTmaNGkST44hKJKTk3XgwAF9+umn6tOnj1drtm3b5lkLAKGCpoEpaBrYFU0Dq9A0AOyCpoEpaBrYET0Dq9Az9sAGNcAHH330kSd6Jk+erEmTJunzzz/Xr371K0lf/lA+efKkli5dqn//+9+qqanRHXfcwQ9nBFVlZaUeffRR1dbWasaMGerXr1+Le5xOpzIyMpSRkaERI0bo4Ycf1qOPPqonnnhCycnJmjhxogYOHKgHHnhALpdL77zzjr73ve9Z8KcBWrdx40Zt3LhRF1xwgSZPnqysrCyrR4KNXXDBBTpw4IDefPNNjRgx4qxBU1FRoTfffNOzFgBCBU0DU9A0CAc0DYKJpgFgFzQNTEHTwO7oGQQTPWMP3p9/B0AffPCBJKlfv36aMmWKnE6nHA5Hi/tiYmJ0zTXX6P7779eJEyf05JNPqqKiItjjIozNnz9flZWVuvbaa1uNnq/r16+frrnmGlVVVentt9/2XO/Vq5cuv/xySdKmTZsCNi/grdzcXOXm5mrEiBGeJ8W2bNnS7KkdIBDGjx8vh8Ohqqoq3XfffVq1alWrx0K73W6tWrVKv/vd73Ts2DE5nU6NHz/egokBoHU0DUxB08CuaBpYhaYBYBc0DUxB08CO6BlYhZ6xB05QA3ywc+dOSdLYsWO9ur9Pnz666qqrtGDBAi1atEjf/e53Azke4PHxxx9Lki688EKv11x00UV64403tH79ev3gBz9odn3x4sU6dOiQ3+cEfHXnnXc2+/zw4cPasmWLtm7datFECBc9evTQ1KlTNWfOHFVUVOjPf/6z4uLi1KtXL3Xs2FGSdOzYMe3atUvHjx/3rJs6dap69Ohh1dgA0AJNA1PQNLArmgZWoWkA2AVNA1PQNLAjegZWoWfsgQ1qgA+qq6slSV26dPFci4iI8HzscrkUHR3dbM3gwYO1YMECrV+/nvBB0DQ9CRYVFeX1mqZ7v/4UWdMRqS6Xy0/TAf7TuXNn5eXlKS8vz+pREAZuuOEGxcbG6pVXXpHL5dLx48e1efPmVu+Njo7W97//fV111VVBnhIA2kbTwBQ0DcIFTYNgomkA2AFNA1PQNAgH9AyCiZ4xHxvUAB84naffFbd9+/aea1/9uLKyUqmpqc3WxMbGSpLKy8uDMCFwWrt27eRyubRz506df/75Xq3ZsWOHJLWI97q6OklSfHy8f4cEAAONGzdOI0aM0LJly7Rp0ybt3btXNTU1kk5/n+zRo4cGDhyovLw8JSQkWDwtALRE08AUNA0ABAZNA8B0NA1MQdMAgP/RM2Zjgxrgg+TkZB04cEBVVVWea4mJiYqOjvb8kvn18Nm/f78ktfoeyECg9O7dW5988onefPNNjRgx4qzRUl1drbfeekuSWoTSvn37JIkf4gDw/yQkJGjixImaOHGi1aMAgM9oGpiCpgGAwKFpAJiMpoEpaBoACAx6xlxOqwcATNKzZ09J0t69ez3XHA6H+vTpI0l69913m91fX1+v+fPnS5LS0tKCNCUgz3Gl5eXluu+++1RcXHzGezds2KDf/e53nqfHxo0b1+z1prXePuEDnCu3261Nmzbptdde04svvqiCggIdPXq02T319fU6deqU54kxAADgG5oGpqBpYCKaBgCAwKNpYAqaBqahZwAEGieoAT7Izs7W6tWrVVxcrGuvvdZz/fLLL1dJSYm2bNmiBx98UMOHD9epU6f04Ycfas+ePZKkESNGWDU2wtDQoUN15ZVXasmSJTpw4IAeffRRJSQkKCMjQx06dJB0+mmc3bt3N3vS7Morr9SQIUM8n1dWVurjjz+WJF100UVB/TMgvKxbt04vvfSSDh8+3Oz6xIkTlZSU5Pl86dKl+vvf/66YmBg999xziomJCfaoQJvq6up0/PhxJSQkeN5yAgBCCU0DU9A0MA1NA7ugaQCEOpoGpqBpYBJ6BnZBz4Q2R2NjY6PVQwCmqKys1B133CGn06mnn35aXbp08bz26KOPnvHph4yMDD388MMt3jMeCLS33npL8+bNO+uTDJGRkZoyZYquv/76ZtdPnTrlCaPk5GRFREQEalSEsffee08vvPCC5/MOHTqourpakvTUU08pPT3d81p9fb1uu+021dbWavr06Ro9enTQ50V4OnnypEpKSiRJWVlZLcK7qqpKzz//vNavX6+GhgbFxMRo7Nix+va3v62oqCgrRgaAVtE0MA1NAxPQNDABTQPALmgamIamQaijZ2ACesYe2KAG+MjtdktSix23dXV1eu2111RYWKjKykpJUmxsrEaNGqWbbrpJsbGxwR4VkHQ62IuKirRp0yaVlZWppqZGkhQfH6/09HQNHDhQubm5zZ6AAIJl//79uueee+R2u5Wdna1bb71V5513nqZOnSqpZfxI0t/+9jcVFhZq1KhRuuuuu6wYG2Fo2bJlmj17tpKTk/Xss882+z3A7Xbrvvvu086dO1usu/jii/XLX/4ymKMCwFnRNDANTYNQRtPAFDQNADuhaWAamgahip6BKegZe+AtPgEfnekoyKioKN1000266aabVFNTo4aGBiUkJMjhcAR5QqC5xMREXXfddbruuuusHgVoYcGCBXK73erevbvuvfdeRUae/VeTzMxMFRYWateuXUGYEDjtk08+kSQNGzasxe8CK1eu9IRPr169lJWVpZKSEu3atUsff/yxiouLOX4fQEihaWAamgahjKaBKWgaAHZC08A0NA1CFT0DU9Az9sAGNSAA4uPjrR4BAIywefNmSVJ+fr5X4SNJaWlpkqQjR44EbC7g68rKyiRJ/fv3b/Ha8uXLJUm9e/fW73//e0VERKi+vl4zZszQ9u3btWzZMuIHgHFoGgDwDk0DU9A0AMINTQMAZ0fPwBT0jD20/ogBAABAEDQFTEZGhtdr2rVrJ0k6depUIEYCWnXs2DFJUmpqarPr9fX1Ki0tlSSNGzdOERERkqTIyEhdeeWVkqQdO3YEcVIAAAAEE00DU9A0AAAA+Dp6BqagZ+yBE9QAH9TW1mrhwoWSpLFjx571veCPHj2qpUuXSpKuvfZaxcTEBHxG4OtqampUWFioTZs2qaysTDU1NZJOP0HWvXt3DRw4UJdffjlPlMESTcfr+xIyTX+HY2NjAzIT0Jqmv3dff4psx44dcrlcktTiCZyuXbtKkiorKwM+HwB4i6aBiWgahDKaBqagaQDYBU0DE9E0CFX0DExBz9gDG9QAH6xYsULz5s1TWlqaJk+efNb7ExMTtWLFCh04cEDJyckaM2ZMEKYEvrRkyRK9/PLLrf5iWVFRoYqKCn3yySeaN2+ebr75Zl1xxRUWTIlwlpycrP379+vgwYPKzMz0as3WrVslSV26dAnkaEAz7dq104kTJzxP6TRpejInLS1NiYmJzV6Ljo4O1ngA4DWaBqahaRDqaBqYgqYBYBc0DUxD0yCU0TMwBT1jD7zFJ+CDDRs2SJJGjBjh1f0Oh0OXXnqpJGnt2rUBmwtozZtvvqn/+Z//8URPbGyssrKyNHLkSI0cOVJZWVmepxtOnTqlF154QW+99ZaVIyMMZWVlSZKKioq8ur+2tlZLliyRJGVnZwdsLuDrmmJ7y5Ytza6vWbNGklqN96qqKklSQkJCgKcDAO/RNDAJTQMT0DQwBU0DwC5oGpiEpkGoo2dgCnrGHjhBDfDBnj17JEn9+/f3ek2/fv2arQWCYe/evZo7d66k00+Iff/739fw4cNbHHva0NCgjz76SK+88oqOHj2qOXPmaPDgwerevbsVYyMMXXnllVq6dKlKSkq0bNky5eXlnfHe6upq/elPf1JlZaUiIiI87x0PBENOTo52796td999V5mZmcrMzFRhYaF27NghSRo6dGiLNU0/+5OTk4M6KwC0haaBKWgamIKmgSloGgB2QdPAFDQNTEDPwBT0jD2wQQ3wQdORkUlJSV6vaTpKkvc2RjC98847crvdSkhI0COPPKKUlJRW74uIiNBll12mAQMG6N5771VVVZXeeecd3XbbbUGeGOGqV69eys/P18KFCzV79mxt2LBBl1xyief1Tz/9VLt379bWrVv14Ycfqra2VpI0adIkde7c2aqxEYby8/O1ZMkSnThxQo899liz19LT0zVkyJAWa5qe6M3IyAjGiADgFZoGpqBpYAqaBqagaQDYBU0DU9A0MAE9A1PQM/bABjXAB1FRUWpoaGj1feLPpOlep5N31EXwNB1vev31158xer4qJSVF1113nV5++WVt3rw50OMBzdx8882qq6vTkiVLtGrVKq1atcrz2vPPP9/i/vz8fE2aNCmYIwJKSkrSb37zGz399NPN/jEzNTVV99xzjxwOR7P7Dxw4oNLSUknSwIEDgzkqALSJpoEpaBqYhKaBCWgaAHZB08AUNA1MQc/ABPSMPbBBDfBBUlKS9u/frx07dnh9fHTTsZJNT+gAwVBRUSHJt2POBwwY0GwtECwOh0M//vGPNWzYML355psqKSlRY2Nji/v69eunG2+8UYMGDbJgSkDKzMzUs88+q61bt6qyslJJSUkaMGCAIiIiWtxbWVnpifQLL7ww2KMCwBnRNDAFTQOT0DQwBU0DwA5oGpiCpoEp6BmYgp4xHxvUAB8MGDBA+/fv17vvvqurrrqqxfvEf119fb3effddz1ogWJqeBGtoaPB6jdvtbrYWCLacnBzl5OToxIkT2rVrl6qqquR2uxUfH6+MjAwlJCRYPSKgyMhIZWdnn/W+AQMG8LMfQEiiaWAKmgYmomlgApoGgOloGpiCpoFp6BmYgJ4xGz/dAB9cfvnlkqT9+/frr3/9a5tHSJ86dUp/+ctftH///mZrgWBoOi5606ZNXq9putebo6aBQGrfvr2ysrI0fPhwjRw5Ujk5OYQPAAB+QtPAFDQNTEbTAAAQODQNTEHTwFT0DIBA4QQ1wAf9+/fXyJEjtXLlSq1evVrbt2/X2LFjlZmZ6TkaurKyUiUlJXr//fd15MgRSdLw4cOVlZVl4eQINwMHDtTnn3+u//znPxo2bJh69OjR5v179+7V22+/Len0ExIAAACwJ5oGpqBpAAAA0BqaBqagaQAAaM7R2NobCAM4I5fLpSeeeMLrJx5ycnL0q1/9StHR0QGeDPjS4cOH9fOf/1z19fWKiYnRpEmTdPnll6tDhw7N7quurlZhYaHeeOMN1dbWKioqSk8//TRP5wAAANgYTQMT0DQAAAA4E5oGJqBpAABojg1qwDlobGzUokWL9J///EcVFRWt3tOpUydNnDhR48aNk8PhCPKEgFRUVKSCggLP5w6HQ6mpqerYsaMk6dixYzp06JC++mNg+vTpGj16dNBnhf29+uqrno8nT57c6vVz8dWvBQAAvEfTwAQ0DUIJTQMAQGihaWACmgahgp4BEArYoAZ8A42Njdq9e7d27dql6upqSVKHDh3Uu3dv9ezZk+CB5davX6/nn39eR48ebfO+pKQk3X777Ro8eHCQJkO4mTp1qufjuXPntnr9XHz1awEAAN/RNAh1NA1CBU0DAEBoomkQ6mgahAJ6BkAoiLR6AMBkDodDvXr1Uq9evaweBWjV4MGD9eyzz2rNmjXatGmTysrKVFNTI0mKj49X9+7dNXDgQF188cWKjORHAgAAQLihaRDqaBoAAAC0haZBqKNpAAA4jRPUAAAAAAAAAAAAAAAAAAAB4bR6AAAAAAAAAAAAgP+/vTuLsbq+/z/+OgOyjCCrFKzWKhbXqlHBOjJxR6vVuqDYpI2JvWibxppetL0wYho1MTaxsVZrkzZNmmitltZoqpW6oYOQYBCtRWVTwC2IikhBcJj5X/z+UFlnsJzzPd/vPB5XOOfzOXknTtSneZ/vAQAAoJosqAEAAAAAAAAAAFAXvsgaoMRWr15dl/cdPXp0Xd4Xtjdz5sy0tbVlyJAhRY8CAEABNA1lp2kAAPo2TUOZ6RmgkWrd3d3dRQ8BwOczbdq0vf6etVot9913315/X9iZadOmpV+/fjnuuOPS3t6ek046KQMGDCh6LAAAGkTTUHaaBgCgb9M0lJmeARrJE9QA2Ia9ZRpt8+bNmT9/fubPn59BgwZl4sSJaW9vz1e/+tW0tPg2cspp1qxZSZKhQ4fmhBNOKHgaAOhbNA2NpmmoIk0DAMXRNDSSnqGK9Exz8gQ1gBJ7+umnd/v6zJkzs3Tp0vTr1y/HHntsDjvssAwfPjxJsmbNmixdujQvvfRSOjs7M378+EyZMiVJcvrpp9d3cPj/Fi1alI6OjsyZMydr167d5rVhw4alra0tkydPzmGHHVbQhPD5fPaTkwcccEAuvfTSTJ48ObVarcCpAKD5aBrKTtNQVZoGAHpH01Bmeoaq0jPNyYIaQEX95je/ydNPP51jjz02P/jBDzJy5Midnvvggw/y29/+NgsWLMgZZ5yR73//+w2eFJKurq689NJL6ejoyLx58/LJJ59s8/rYsWPT3t6eyZMnZ+zYsQVNCb23s0f7jx07Npdccon/uQQAvaRpKBNNQ9VoGgD432kaykLPUDV6pjlZUAOooLlz5+aXv/xlxo8fn5tuuqnHR/B2dXXluuuuy7Jly3Lttdemra2tQZPCjjZt2pTnn38+HR0defHFF9PZ2bnN6+PHj097e3va2toybNiwgqaE3XvggQeS/N/v86JFi7JkyZKtv8t//vOfixwNAEpB01BmmoYq0DQA8L/RNJSVnqEK9ExzsqAGUEE33nhjXn755T2KmOeeey633357jjnmmFx//fV1nhB6Z926dZk7d246OjryyiuvbPNav379cu+99xY0GeyZTz/9NIsXL84rr7ySyy67rOhxAKDpaRqqQtNQFZoGAPaMpqEK9AxVoWeaQ/+iBwBg71uxYkWSZNy4cb2+s+XslrvQDIYMGZKzzz47Z599dj744IN0dHTkb3/7W9avX5/NmzcXPR702j777JOjjjoqRx11VNGjAEApaBqqQtNQFZoGAPaMpqEK9AxVoWeagwU1gArasGFDkuSjjz7q9Z0tZ7fchWayYsWKdHR0ZPbs2Vm/fn3R4wAAUGeahqrRNAAAfYumoUr0DLA3WFADqKD9998/b7/9dp555pkcf/zxvbrzzDPPJElGjx5dx8mg91avXr01eLb/xNiAAQNy4oknFjQZAAD1pmmoAk0DANB3aRrKTs8Ae5sFNYAKOumkk/LQQw9l9uzZOfjgg/PNb35zt+e3nE2SSZMmNWJE2Kl169Zlzpw56ejoyGuvvZbu7u6tr7W0tOSYY47J5MmTc/LJJ2fQoEEFTkpfs379+jzyyCNJkrPOOisjRozY7fkPP/wwTzzxRJLkG9/4ht9XANhDmoay0jQ0K00DAI2laSgjPUOz0jPVYEENoIIuvvjiPPPMM1mzZk3uvffezJ49O6eddlrGjx+fYcOGpVarZc2aNVm6dGmeeeaZvPHGG0mS4cOH9xhJsLdt2rQp8+bNS0dHR1566aV0dnZu8/qhhx6a9vb2tLW1Zfjw4cUMSZ/37LPP5oEHHsjYsWMzderUHs8PHz48zz77bN59992MHDkyZ555ZgOmBIDq0DSUiaahDDQNADSWpqEs9AxloGeqwYIaQAXtu+++uf7663PzzTfngw8+yPLly/PHP/5xt3dGjhyZ6667Lvvuu2+DpoTkjjvuyPPPP59PPvlkm59/4QtfyOTJk9Pe3p5x48YVNB381wsvvJAkOeWUU3p1vlar5dRTT82MGTPy/PPPix8A2EOahrLQNJSFpgGAxtI0lIGeoSz0TDVYUAOoqAMPPDC33XZb/vKXv+Spp57Kf/7zn52e23fffXP66adn6tSpaW1tbfCU9HUdHR1b/7zffvulra0t7e3tOeywwwqcCna0fPnyJMnhhx/e6zsTJkzY5i4AsGc0DWWgaSgLTQMAjadpaHZ6hrLQM9VgQQ2gwgYPHpzvfOc7+da3vpVly5ZlxYoVWbduXZJkyJAh+dKXvpRDDz00/fv71wHFGDhwYCZNmpTJkyfn2GOPTUtLS9EjwU599NFHSZIRI0b0+s6Wx52vWbOmDhMBQN+gaWh2moay0DQAUAxNQzPTM5SFnqkG/6YD6AP69++fCRMmbN0Uh2bxu9/9LgMGDCh6DOjRPvvsk82bN2fjxo29vrPlrKgHgP+dpqFZaRrKQtMAQLE0Dc1Iz1AWeqYa/J0AAAojfCiLLZ/KWbp0aa/vbDm75VM6AABUj6ahLDQNAADb0zOUhZ6pBk9QAwCaRmdnZ15//fWsXLlym8ecH3TQQTnkkEM85pzCHHHEEXnnnXcyc+bMTJkypcffxc7OzsycOXPrXQAA+gZNQ7PSNAAA9ETP0Kz0TDX4JwgAULiNGzdmxowZeeKJJ7ZGz/aGDBmSs846K5dddlkGDhzY4Anp684444w89dRTeeedd/KrX/0qP/zhD3f5e7hx48b8+te/zjvvvLP1LgAA1aZpaHaaBgCAXdEzNDs9Uw217u7u7qKHAAD6rtWrV+fGG2/Mu+++26vzY8eOzfTp0zNq1Kg6Twbbuv322/Pcc88lSUaNGpWzzjorRx555NbHQ69ZsyYLFy7Mk08+mffffz9J8rWvfS0//vGPixoZAIAG0DSUhaYBAGB7eoay0DPlZ0ENAChMZ2dnfvrTn+att95KkhxwwAE544wzcthhh23zH5RLlizJrFmz8uabbyZJDjzwwNx6663p169fUaPTB23atCm33npr/vWvf/Xq/LHHHpuf/OQnGTBgQJ0nAwCgKJqGMtE0AAB8lp6hTPRM+VlQAwAKM3PmzPz+979PklxyySW54oor0tLSstOzXV1deeCBB/LXv/41SfLd7343U6ZMadiskCTd3d159NFH8/DDD+eDDz7Y6ZlRo0bloosuyrnnnptardbgCQEAaCRNQ9loGgAAttAzlI2eKbf+RQ8AAPRdc+bMSZJMnDgxV1555W7PtrS0ZNq0aVm5cmXmzZuXuXPnih8arlar5fzzz8/Xv/71vPHGG3n99dfz8ccfJ0mGDh2aQw89NAcffLDoAQDoIzQNZaNpAADYQs9QNnqm3CyoAQCFWblyZZLkzDPP7PWdM888M/PmzcuKFSvqNRb0qFar5ZBDDskhhxxS9CgAABRI01BWmgYAAD1DWemZctr58xkBABpg/fr1SZIRI0b0+s6Wsxs2bKjLTAAAAL2laQAAgLLSM0AjWVADAAozZMiQJMmqVat6fWfL2S13AQAAiqJpAACAstIzQCP5ik8AoDCHHHJIFixYkMceeywnn3xyr+7MnDkzSfLlL3+5jpPRV82aNWvrn0877bSd/vzz+Ox7AQBQHZqGZqNpAADoLT1Ds9Ez1WZBDQAozKmnnpoFCxbk3//+d+66665cffXVGTRo0E7Pbty4MX/4wx/y8ssvJ0kmT57cyFHpI+66664kSa1W2yZYtvz889j+vQAAqA5NQ7PRNAAA9JaeodnomWqzoAYAFKa9vT3//Oc/s2jRosyaNSsvvPBCTjnllHzlK1/JsGHDkiQfffRRFi9enDlz5mTt2rVJkiOOOCLt7e1Fjk7FdXd3N+V7AQDQXDQNzUrTAADQEz1Ds9Iz1VTr9ncDACjQunXrcsstt2Tx4sW9Oj9hwoT87Gc/y5AhQ+o8GX3Re++9t/XP+++//05//nl89r0AAKgWTUMz0TQAAOwJPUMz0TPVZkENAChcV1dXZs6cmZkzZ+att97a6ZkvfvGLOffcc3POOeekpaWlwRMCAADsmqYBAADKSs8AjWBBDQBoKh9++GFWrlyZdevWJUmGDBmSgw46KCNGjCh4MgAAgJ5pGgAAoKz0DFAvFtQAAAAAAAAAAACoi/5FDwAAAGWwcePGJMnAgQN3+vqjjz6aOXPm5OOPP86YMWNyzjnn5KSTTmrkiAAAALukaQAAgLLSM+XnCWoAANCD559/Pr/4xS8yaNCg3H333Rk8ePA2r991112ZNWvWDveuvPLKXHLJJY0aEwAAYKc0DQAAUFZ6pho8QQ0AKNzmzZszf/78vPLKK1m1alU2bNiQrq6u3d6p1WqZPn16gyakr3vxxReTJCeddNIO4fPqq69uDZ+BAwdm3Lhxefvtt7Np06bcf//9OfHEE/OlL32p4TMDANA4moZmp2kAANgVPUOz0zPVYEENACjUwoULc+edd2b16tVFjwK7tHjx4iTJ0UcfvcNrjz/+eJJk5MiRuemmmzJq1KisXr0606dPz/vvv5/HH388V199dUPnBQCgcTQNZaBpAADYGT1DGeiZarCgBgAU5o033sjNN9+czs7OJMk+++yTcePGpbW1NS0tLQVPB//10UcfJUkOOOCAHV5bsGBBkuS8887LqFGjkiSjR4/Oeeedl3vuuScLFy5s2JwAADSWpqEsNA0AANvTM5SFnqkGC2oAQGHuv//+dHZ2pn///rnqqqty+umnZ8CAAUWPBTtYu3Ztkuzw6OiVK1fm448/TpJMnDhxm9fGjx+fJHnvvfcaMCEAAEXQNJSFpgEAYHt6hrLQM9VgQQ0AKMxrr72WJLn00kszZcqUgqeBXdvyabF169Zt8/NXX301SbLffvvt8MmdfffdN0ny6aefNmBCAACKoGkoC00DAMD29AxloWeqwXMZAYDCbNq0KUly/PHHFzsI9GDkyJFJ/u+R5581f/78JMmRRx65w53169cnSYYOHVrf4QAAKIymoSw0DQAA29MzlIWeqQYLagBAYcaMGZMk2bx5c8GTwO5tiZt//OMfWx8lvWTJkixYsCBJctxxx+1w56233kqSDB8+vCEzAgDQeJqGstA0AABsT89QFnqmGnzFJwBQmIkTJ+bNN9/MwoULM2HChKLHgV2aMmVKnn766axatSrXXHNNxo0blzfffDNdXV0ZMmRI2tradrjz8ssvJ0kOPPDARo8LAECDaBrKQtMAALA9PUNZ6Jlq8AQ1AKAw559/fkaMGJGHH344q1atKnoc2KVDDz003/72t1Or1fLJJ5/k9ddfz6effpp+/frle9/7XgYPHrzN+fXr1299tPTRRx9dxMgAADSApqEsNA0AANvTM5SFnqmGWnd3d3fRQwAAfdfy5ctzyy23pLOzM9OmTUtbW1taW1uLHgt2asWKFZk7d27WrFmT4cOHZ/LkyTnggAN2ODdv3rw88sgjSZJrr73WI6QBACpM01AmmgYAgM/SM5SJnik3C2oAQOFWrVqV6667LmvXrk2tVsvQoUMzcODA3d6p1Wq54447GjQhAADArmkaAACgrPQM0Aj9ix4AAOjb5s6dm7vvvjsbNmxIknR3d2ft2rUFTwUAANA7mgYAACgrPQM0igU1AKAwixYtyu23356urq4kyejRo3PwwQentbU1LS0tBU8HAACwe5oGAAAoKz0DNJIFNQCgMDNmzEhXV1daW1tzzTXX5IQTTih6JNiphQsX/k/3jzrqqL00CQAAzUTTUBaaBgCA7ekZykLPVIMFNQCgMMuWLUuSXH755cKHpvbzn//8c9+t1Wq577779uI0AAA0C01DWWgaAAC2p2coCz1TDZ7LCAAUZuPGjUmSI444ouBJoH66u7uLHgEAgDrRNPQFmgYAoJr0DH2BnmkenqAGABRmzJgxWblyZTZt2lT0KLBbN9xwQ49nPvnkk7zzzjt57rnnsmTJkhx++OG54oor0tLiMyEAAFWlaSgLTQMAwPb0DGWhZ6rBghoAUJhJkyZl5cqVWbBggU/o0NSOOuqoXp+94IIL8tBDD+Wee+7Jk08+mR/96Ed1nAwAgCJpGspC0wAAsD09Q1nomWqwKggAFObCCy/M2LFj88gjj2Tp0qVFjwN7zUUXXZRJkyZl9uzZmT17dtHjAABQJ5qGqtI0AADVp2eoKj3TnCyoAQCFGTx4cKZPn56DDjooN9xwQ/70pz9l+fLlHidNJZx22mlJkscff7zgSQAAqBdNQ5VpGgCAatMzVJmeaT6+4hMAKMy0adO2+esHH3wwDz74YK/u1mq13HfffXWYCvaO0aNHJ0lWrFhR8CQAANSLpqHKNA0AQLXpGapMzzQfT1ADAEqpu7u76BFgt9asWZMk2bhxY7GDAADQlDQNzU7TAACwK3qGZqdnmo8nqAEAhZk6dWrRI0DdPPbYY0n++ykdAACqR9NQZZoGAKDa9AxVpmeajwU1AKAwl19+edEjwF61bt26LFu2LH//+9+zYMGCJMmkSZOKHQoAgLrRNFSNpgEA6Dv0DFWjZ5qbBTUAAOjBtGnTPte9cePG5eKLL967wwAAAOwhTQMAAJSVnqkGC2oAALCXtbS05JRTTslVV12V1tbWoscBAADYI5oGAAAoKz3TnCyoAQBAD6ZOndrjmVqtlsGDB2fMmDE5/PDDs99++zVgMgAAgJ5pGgAAoKz0TDXUuru7u4seAgAAAAAAAAAAgOppKXoAAAAAAAAAAAAAqsmCGgAAAAAAAAAAAHVhQQ0AAAAAAAAAAIC66F/0AAAAUBabN2/O/Pnz88orr2TVqlXZsGFDurq6dnunVqtl+vTpDZoQAABg1zQNAABQVnqm3CyoAQBALyxcuDB33nlnVq9eXfQoAAAAe0zTAAAAZaVnys+CGgAA9OCNN97IzTffnM7OziTJPvvsk3HjxqW1tTUtLS0FTwcAALB7mgYAACgrPVMNFtQAAKAH999/fzo7O9O/f/9cddVVOf300zNgwICixwIAAOgVTQMAAJSVnqkGC2oAANCD1157LUly6aWXZsqUKQVPAwAAsGc0DQAAUFZ6pho86w4AAHqwadOmJMnxxx9f7CAAAACfg6YBAADKSs9UgwU1AADowZgxY5IkmzdvLngSAACAPadpAACAstIz1WBBDQAAejBx4sQkycKFCwueBAAAYM9pGgAAoKz0TDVYUAMAgB6cf/75GTFiRB5++OGsWrWq6HEAAAD2iKYBAADKSs9UQ627u7u76CEAAKDZLV++PLfccks6Ozszbdq0tLW1pbW1teixAAAAekXTAAAAZaVnys+CGgAA9NKqVaty3XXXZe3atanVahk6dGgGDhy42zu1Wi133HFHgyYEAADYNU0DAACUlZ4pt/5FDwAAAGUwd+7c3H333dmwYUOSpLu7O2vXri14KgAAgN7RNAAAQFnpmfKzoAYAAD1YtGhRbr/99nR1dSVJRo8enYMPPjitra1paWkpeDoAAIDd0zQAAEBZ6ZlqsKAGAAA9mDFjRrq6utLa2pprrrkmJ5xwQtEjAQAA9JqmAQAAykrPVINVQgAA6MGyZcuSJJdffrnwAQAASkfTAAAAZaVnqsGCGgAA9GDjxo1JkiOOOKLgSQAAAPacpgEAAMpKz1SDBTUAAOjBmDFjkiSbNm0qeBIAAIA9p2kAAICy0jPVYEENAAB6MGnSpCTJggULih0EAADgc9A0AABAWemZarCgBgAAPbjwwgszduzYPPLII1m6dGnR4wAAAOwRTQMAAJSVnqmGWnd3d3fRQwAAQLN7//33c9ttt2X58uW54IIL0tbWlnHjxmXAgAFFjwYAANAjTQMAAJSVnik/C2oAANCDadOmfe67tVot9913316cBgAAYM9oGgAAoKz0TDX4ik8AAKgjnwcBAADKTNMAAABlpWeaR/+iBwAAgGY3derUokcAAAD43DQNAABQVnqmGnzFJwAAAAAAAAAAAHXhKz4BAAAAAAAAAACoCwtqAAAAAAAAAAAA1IUFNQAAAAAAAAAAAOrCghoAAAAAAAAAAAB1YUENAAAAAAAAAACAurCgBgAAAAAAAAAAQF1YUAMAAAAAAAAAAKAuLKgBAAAAAAAAAABQFxbUAAAAAAAAAAAAqAsLagAAAAAAAAAAANSFBTUAAAAAAAAAAADqwoIaAAAAAAAAAAAAdWFBDQAAAAAAAAAAgLqwoAYAAAAAAAAAAEBdWFADAAAAAAAAAACgLiyoAQAAAAAAAAAAUBcW1AAAAAAAAAAAAKgLC2oAAAAAAAAAAADUhQU1AAAAAAAAAAAA6uL/AQqL1GI1WaP+AAAAAElFTkSuQmCC",
"text/plain": [
""
]
},
"metadata": {
"image/png": {
"height": 739,
"width": 1236
}
},
"output_type": "display_data"
}
],
"source": [
"# Set plot style\n",
"plt.style.use(\"ggplot\")\n",
"\n",
"# Create a bar plot with subplots for each coherence measure\n",
"fig, axes = plt.subplots(nrows=1, ncols=3, figsize=(15, 5))\n",
"fig.suptitle(\"Coherence Scores per Topic and Measure\")\n",
"\n",
"for idx, measure in enumerate([\"c_v\", \"c_uci\", \"u_mass\"]):\n",
" ax = axes[idx]\n",
" data = all_coherence_scores[all_coherence_scores[\"Measure\"] == measure]\n",
" data.plot(kind=\"bar\", x=\"Topic\", y=\"Coherence\", ax=ax, legend=False)\n",
" ax.set_title(measure)\n",
" ax.set_xlabel(\"\")\n",
"\n",
"# Add a y-label to the leftmost subplot\n",
"axes[0].set_ylabel(\"Coherence Score\")\n",
"\n",
"plt.show()\n"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "19a594be",
"metadata": {},
"source": [
"## Summary\n",
"\n",
"By calculating topic coherence scores, we can gain insights into the quality of the topics generated by a topic model. Higher coherence scores indicate that the words in the topic are more related to each other, forming a coherent concept, while lower coherence scores suggest that the words in the topic may not be related or form a clear concept.\n"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "e7633ddc",
"metadata": {},
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.12"
},
"vscode": {
"interpreter": {
"hash": "d4d1e4263499bec80672ea0156c357c1ee493ec2b1c70f0acce89fc37c4a6abe"
}
}
},
"nbformat": 4,
"nbformat_minor": 5
}